

HILTI HST2 **EXPANSION ANCHOR**

ETA-15/0435 (21.12.2017)

English 2-26 **Deutsch** 28-52

54-80 **Polski**

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-15/0435 of 21 December 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Hilti metal expansion anchor HST2 and HST2-R

Mechanichal fastener for use in concrete

Hilti AG Feldkircherstraße 100 9494 Schaan FÜRSTENTUM LIECHTENSTEIN

Hilti Aktiengesellschaft

25 pages including 3 annexes which form an integral part of this assessment

EAD 330232-00-0601

ETA-15/0435 issued on 7 August 2017

European Technical Assessment ETA-15/0435

Page 2 of 25 | 21 December 2017

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-15/0435

Page 3 of 25 | 21 December 2017

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Hilti metal expansion anchor HST2 and HST2-R is an anchor made of galvanized steel (HST2) or stainless steel (HST2-R) which is placed into a drilled hole and anchored by torque controlled expansion.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under static and quasi-static loading, displacements	See Annex C1 to C4
Characteristic resistance for seismic performance category C1, displacements	See Annex C5 to C6
Characteristic resistance for seismic performance category C2, displacements	See Annex C7 to C8

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	See Annex C9 to C10

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European assessment document EAD 330232-00-0601, the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

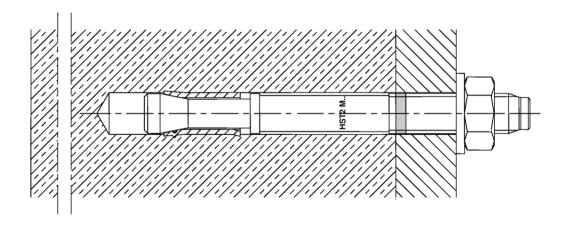
European Technical Assessment ETA-15/0435

Page 4 of 25 | 21 December 2017

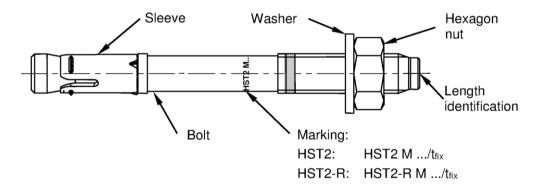
English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 21 December 2017 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department


beglaubigt. Lange

Installed condition for HST2 and HST2-R

Product description and marking for HST2 and HST2-R

Hilti metal expansion anchor HST2 and HST2-R	
Product description Installation condition, anchor types, marking and identification	Annex A1

Letter			Α	В	С	D	Е	f	П
A so also as I as a settle	≥	[mm]	38,1	50,8	63,5	76,2	88,9	100,0	100,
Anchor length	<	[mm]	50,8	63,5	76,2	88,9	101,6	100,0	100,
Letter			F	G	Δ	Н	ı	J	K
A male on Law with	≥	[mm]	101,6	114,3	125,0	127,0	139,7	152,4	165,
Anchor length	<	[mm]	114,3	127,0	125,0	139,7	152,4	165,1	177,
Letter			L	М	N	0	Р	Q	R
Ancharlanath	≥	[mm]	177,8	190,5	203,2	215,9	228,6	241,3	254,
Anchor length	<	[mm]	190,5	203,2	215,9	228,6	241,3	254,0	279,
Letter			r	S	Т	U	٧	W	Х
Anchor length	≥	[mm]	260,0	279,4	304,8	330,2	355,6	381,0	406,
	<	[mm]	260,0	304,8	330,2	355,6	381,0	406,4	431,
Letter			Υ	Z	AA	ВВ	СС	DD	EE
Anchor length	≥	[mm]	431,8	457,2	482,6	508,0	533,4	558,8	584,
Anchoriength	<	[mm]	457,2	482,6	508,0	533,4	558,8	584,2	609,
Letter			FF	GG	нн	II	JJ	KK	LL
Anchor length	≥	[mm]	609,6	635,0	660,4	685,8	711,2	736,6	762,
Anchor length	<	[mm]	635,0	660,4	685,8	711,2	736,6	762,0	787,
Letter			MM	NN	00	PP	QQ	RR	SS
Analagulangsth	2	[mm]	787,4	812,8	838,2	863,6	889,0	914,4	939,
Anchor length	<	[mm]	812,8	838,2	863,6	889,0	914,4	939,8	965,
Letter			TT	UU	VV				
A male on Law outle	≥	[mm]	965,2	990,6	1016,0				
Anchor length	<	[mm]	990,6	1016,0	1041,4	1			

Hilti metal expansion anchor HST2 and HST2-R	
Product description Installation condition, anchor types, marking and identification	Annex A2

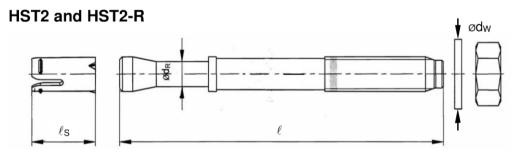


Table A2: Materials

Designation	Material				
HST2 (Carbon steel)					
Expansion sleeve	Stainless steel A2				
Bolt	Carbon steel, galvanized, coated (transparent), rupture elongation ($I_0 = 5d$) > 8 %				
Washer	Carbon steel, galvanized				
Hexagon nut	Carbon steel, galvanized				
HST2-R (Stainless steel A4)					
Expansion sleeve Stainless steel A4					
Bolt	Stainless steel A4 or Duplex A4, cone coated (transparent), rupture elongation ($I_0 = 5d$) > 8 %				
Washer	Stainless steel A4				
Hexagon nut	Stainless steel A4, coated				

Table A3: Dimensions HST2 and HST2-R

HST2, HST2-R			М8	M10	M12	M16
Maximum length of anchor	ℓ_{max}	[mm]	260	280	295	350
Shaft diameter at the cone	dR	[mm]	5,5	7,2	8,5	11,6
Length of expansion sleeve	ℓs	[mm]	14,8	18,2	22,7	24,3
Diameter of washer	dw ≥	[mm]	15,57	19,48	23,48	29,48

Hilti metal expansion anchor HST2 and HST2-R	
Product description Materials and dimensions	Annex A3

Specifications of intended use

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- Cracked and non-cracked concrete.

Use conditions (Environmental conditions):

- Hilti metal expansion anchor HST2 made of galvanized steel:
 - Structures subject to dry internal conditions.
- Hilti metal expansion anchor HST2-R made of stainless steel A4:

Structures subject to dry internal conditions and also in structures subject to external atmospheric exposure (including industrial and marine environment), or exposure in permanently damp internal conditions, if no particular aggressive conditions exist. Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages under static or quasi-static actions are designed in accordance with:
 - FprEN 1992-4:2016 and EOTA Technical Report TR 055, 12/2016
- Anchorages under seismic actions (cracked concrete) are designed in accordance with:
 - FprEN 1992-4:2016 and EOTA Technical Report TR 045, 2/2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure. Fastenings where shear loads act on anchors with a lever arm, such as e.g.in stand-off installation or with a grout layer, are not covered.
- Anchorages under fire exposure are designed in accordance with:
 - FprEN 1992-4:2016 and EOTA Technical Report TR 020, 4/2004
 - In case of requirements to resistance to fire local spalling of the concrete cover must be avoided.

Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- The anchor may only be set once.
- Overhead applications are permitted.

Hilti metal expansion anchor HST2 and HST2-R	
Specifications of intended use	Annex B1

Table B1: Drilling technique

HST2, HST2-R	М8	M10	M12	M16
Hammer drilling (HD)	_	✓	✓	✓
Diamond coring (DD) with DD EC-1 coring tool and DD-C TS/TL core bits or DD-C T2/T4 core bits DD 30-W coring tool and C+ SPX-T (abrasive) core bits	→	✓	√	✓
Hammer drilling with Hilti hollow drill bit TE-CD/YD drilling system (HDB)	-	-	√	✓

Table B2: Drill hole cleaning

Manual cleaning (MC): Hilti hand pump for blowing out drill holes	
Compressed air cleaning (CAC): Air nozzle with an orifice opening of 3,5 mm in diameter	
Automated cleaning (AC): Cleaning is performed during drilling with Hilti TE-CD and TE-YD drilling system including vacuum cleaner	

Table B3: Methods for application of torque moment

HST2, HST2-R	М8	M10	M12	M16
Torque wrench	✓	✓	✓	✓
Machine torqueing with Hilti SIW 6AT-A22 impact wrench and SI-AT-A22 adaptive torque module	√	✓	√	-

Hilti metal expansion anchor HST2 and HST2-R	
Specifications of intended use	Annex B2

Table B4: Overview use and performance categories

Anchorages subject to:	HST2, HST2-R
Static and quasi static loading	M8 to M16 Table : C1 - C3
Seismic performance category C1/C2	M10 to M16 (HST2 only) Table : C4 - C9
Static and quasi static loading under fire exposure	M8 to M16 Table : C10 - C11

Hilti metal expansion anchor HST2 and HST2-R

Specifications of intended use

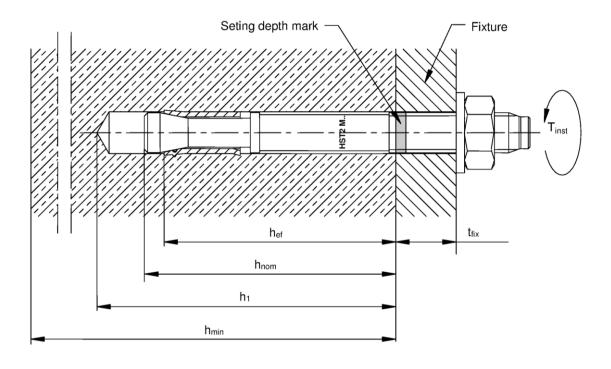

Annex B3

Table B5: Installation parameters for HST2 and HST2-R

HST2, HST2-R			М8	M10	M12	M16
Nominal diameter of drill bit	d_0	[mm]	8	10	12	16
Cutting diameter of drill bit	d _{cut} ≤	[mm]	8,45	10,45	12,50	16,50
drill hole depth1)	h₁ ≥	[mm]	60	74	88	103
Effective embedment depth	h _{ef}	[mm]	47	60	70	82
Thread engagement length	h_{nom}	[mm]	55	69	80	95
Maximum diameter of clearance hole in the fixture	df	[mm]	9	12	14	18
Installation torque moment	T _{inst}	[Nm]	20	45	60	110
Maximum thickness of fixture	t _{fix,max}	[mm]	195	200	200	235
Width across flats	SW	[mm]	13	17	19	24

 $^{^{1)}}$ In case of diamond drilling + 5 mm for M8 to M10 and + 2 mm for M12 to M16

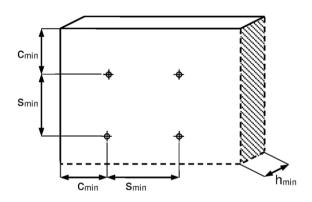

Hilti metal expansion anchor HST2 and HST2-R	
Specifications of intended use	Annex B4
Installation parameters	

Table B6: Minimum spacing and edge distance for HST2 and HST2-R

			М8	M10	M12	M16
Minimum thickness of concrete member	h _{min,1}	[mm]	100	120	140	160
Cracked concrete						
HST2						
Minimum analing 1)	Smin	[mm]	40	55	60	70
Minimum spacing 1)	for c ≥	[mm]	50	70	75	100
Minimove adaptation of	Cmin	[mm]	45	55	55	70
Minimum edge distance 1)	for s ≥	[mm]	50	90	120	150
HST2-R						
Minimum analog ()	Smin	[mm]	40	55	60	70
Minimum spacing $^{1)}$ for $^{1)}$	for c ≥	[mm]	50	65	75	100
Minimum edge distance 1) $\frac{C_{min}}{\text{for s}}$	Cmin	[mm]	45	50	55	60
	for s ≥	[mm]	50	90	110	160

 $^{^{1)}}$ Linear interpolation for s_{min} and c_{min} allowed

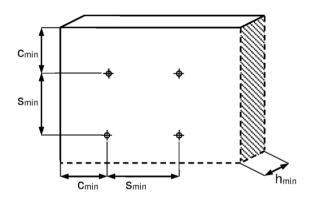

Hilti metal expansion anchor HST2 and HST2-R	
Intended Use Minimum spacing and minimum edge distance	Annex B5

Table B6 continued

			М8	M10	M12	M16
Minimum thickness of concrete member	h _{min,1}	[mm]	100	120	140	160
Non-cracked concrete						
HST2						
NA!i	Smin	[mm]	60	55	60	70
Minimum spacing 1)	for c ≥	[mm]	50	80	85	110
Minimum edge distance 1)	Cmin	[mm]	50	55	55	85
	for s ≥	[mm]	60	115	145	150
HST2-R						
NA!!	Smin	[mm]	60	55	60	70
Minimum spacing 1) for c	for c ≥	[mm]	60	70	80	110
Minimum adaa diatanaa 1)	Cmin	[mm]	60	50	55	70
Minimum edge distance ¹) for s ≥	[mm]	60	115	145	160	

 $^{^{1)}\,}Linear$ interpolation for s_{min} and c_{min} allowed

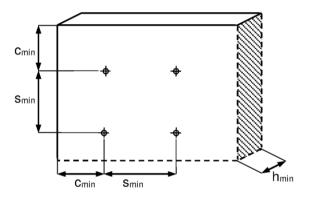
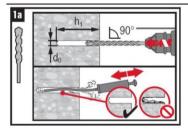
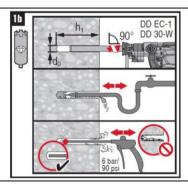

Hilti metal expansion anchor HST2 and HST2-R	
Intended Use Minimum spacing and minimum edge distance	Annex B6

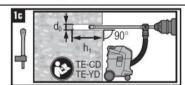
Table B6 continued

			М8	M10	M12	M16
Minimum thickness of concrete member	h _{min,2}	[mm]	80	100	120	140
Cracked concrete				•		
HST2 and HST2-R						
N. Alimina como a como a los as	Smin	[mm]	50	55	60	80
Minimum spacing	for c ≥	[mm]	60	110	100	140
Minimum edge distance	Cmin	[mm]	55	70	70	80
	for s ≥	[mm]	60	100	130	180
Non-cracked concrete						
HST2 and HST2-R						
N. Alianiana and an analysis	Smin	[mm]	60	55	60	80
Minimum spacing	for c ≥	[mm]	75	115	100	140
Minimum adap diatana	Cmin	[mm]	70	70	70	80
Minimum edge distance	for s ≥	[mm]	80	110	130	180

 $^{^{1)}\,}Linear$ interpolation for s_{min} and c_{min} allowed

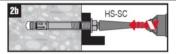

Hilti metal expansion anchor HST2 and HST2-R	
Intended Use Minimum spacing and minimum edge distance	Annex B7

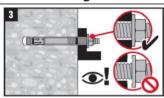



Installation instruction

Hole drilling and cleaning

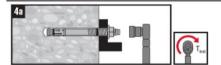
- a) Hammer drilling (HD): M8 to M16
- b) Diamond coring (DD): M8 to M16
- c) Hammer drilling with Hilti hollow drill bit (HDB): M12 to M16

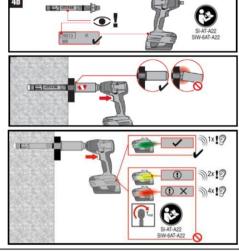




Anchor setting

- a) Hammer setting: M8 to M16
- 2a
- b) Machine setting (setting tool): M8 to M16




Check setting

Anchor torqueing

- a) Torque wrench: M8 to M16
- b) Machine torqueing: M8 to M12

Hilti metal expansion anchor HST2 and HST2-R

Intended Use

Installation instructions

Annex B8

Table C1: Characteristic tension resistance for HST2 and HST2-R in cracked and non-cracked concrete

			М8	M10	M12	M16
Steel failure		'				
HST2						
Characteristic resistance	$N_{Rk,s}$	[kN]	17,8	31,4	44,8	78,2
Partial safety factor	γMs ¹⁾	[-]		1,	40	
HST2-R		•				
Characteristic resistance	N _{Rk,s}	[kN]	17,6	30,5	43,1	78,2
Partial safety factor	γMs ¹⁾	[-]		1,	40	
Pullout failure						
HST2						
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	5,0	9,0	12,0	20,0
Characteristic resistance in non-cracked concrete C20/25	$N_{Rk,p}$	[kN]	9,0	16,0	20,0	35,0
Installation safety factor	γinst	[-]	1,00			
HST2-R		'				
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	5,0	9,0	12,0	25,0
Characteristic resistance in non-cracked concrete C20/25	$N_{Rk,p}$	[kN]	9,0	16,0	20,0	35,0
Installation safety factor	γinst	[-]	1,00			
HST2 and HST2-R		'				
	ψc	C20/25		1,0	00	
Increasing factor for cracked	Ψc	C30/37	1,22			
and non-cracked concrete	Ψc	C40/50		1,	41	
	Ψc	C50/60		1,	55	

¹⁾ In absence of other national regulations

Hilti metal expansion anchor HST2 and HST2-R	
Performances Characteristic values of resistance under tension loading in cracked and non-cracked concrete	Annex C1

Table C1 continued

			М8	M10	M12	M16		
Concrete cone and splitting failure								
HST2 and HST2-R								
Effective embedment depth	h _{ef}	[mm]	47	60	70	82		
Installation safety factor	γinst	[-]		1,	00			
Factor for cracked concrete	$k_1 = k$	cr,N [-]	7,7					
Factor for non-cracked concrete	$k_1 = k$	ucr,N [-]	7,7 11,0					
Spacing	Scr,N Scr,sp	[mm]		3	h _{ef}			
Edge distance	Ccr,N Ccr,sp	[mm]		1,5	i h _{ef}			

Hilti metal expansion anchor HST2 and HST2-R	
Performances Characteristic values of resistance under tension loading in cracked and non-cracked concrete	Annex C2

Table C2: Characteristic shear resistance for HST2 and HST2-R in cracked and noncracked concrete

			M8	M10	M12	M16
Steel failure						
HST2						
Characteristic resistance	$V_{Rk,s}$	[kN]	11,4	21,6	31,4	55,3
Partial safety factor	γMs ¹⁾	[-]	1,25			
Ductility factor	k ₇	[-]		1,	,0	
HST2-R		·				
Characteristic resistance	$V_{Rk,s}$	[kN]	15,7	25,3	36,7	63,6
Partial safety factor	γ Ms $^{1)}$	[-]		1,	25	
Ductility factor	k ₇	[-]	1,0			
Steel failure with lever arm						
HST2						
Characteristic resistance	$M^0_{Rk,s}$	[Nm]	25	55	93	240
Partial safety factor	γ Ms $^{1)}$	[-]		1,	25	
HST2-R		·				
Characteristic resistance	M^0 Rk,s	[Nm]	27	53	93	216
Partial safety factor	γMs ¹⁾	[-]		1,:	25	
Concrete pryout failure		'				
HST2 and HST2-R						
Installation safety factor	γinst	[-]		1,	00	
Pryout factor	k ₈	[-]	2,0	2,0	2,2	2,5
Concrete edge failure						
HST2 and HST2-R						
Effective length of anchor in shear loading	lf	[mm]	47	60	70	82
Diameter of anchor	d_{nom}	[mm]	8	10	12	16
Installation safety factor	γinst	[-]		1,0	00	

¹⁾ In absence of other national regulations

Hilti metal expansion anchor HST2 and HST2-R	
Performances Characteristic values of resistance under shear loading in cracked and non-cracked concrete	Annex C3

Table C3: Displacements under tension and shear loads for HST2 and HST2-R for static and quasi static loading

			M8	M10	M12	M16
Displacements under tension loa	ading					
HST2						
Tension load in cracked concrete	N	[kN]	2,0	4,3	5,7	9,5
Corresponding displacement	δηο	[mm]	1,3	0,2	0,1	0,5
Corresponding displacement	δ _{N∞}	[mm]	1,2	1,0	1,2	1,2
Tension load in non-cracked concrete	N	[kN]	3,6	7,6	9,5	16,7
	δηο	[mm]	0,2	0,1	0,1	0,4
Corresponding displacement	δ _{N∞}	[mm]	1,1	1,1	1,1	1,1
HST2-R						
Tension load in cracked concrete	N	[kN]	2,4	4,3	5,7	11,9
Corresponding displacement	δνο	[mm]	0,6	0,2	0,8	1,0
	δ _{N∞}	[mm]	1,5	1,2	1,4	1,2
Tension load in non-cracked concrete	N	[kN]	4,3	7,6	9,5	16,7
	δηο	[mm]	0,1	0,1	0,1	0,1
Corresponding displacement	δn∞	[mm]	1,5	1,2	1,4	1,2
Displacements under shear load	ing					
HST2						
Shear load in cracked and non- cracked concrete	٧	[kN]	6,5	12,3	17,9	31,6
Corresponding displacement	δνο	[mm]	2,0	2,3	3,3	4,0
Corresponding displacement	δν∞	[mm]	3,1	3,4	4,9	6,0
HST2-R						
Shear load in cracked and non- cracked concrete	٧	[kN]	9,0	14,5	21,0	36,3
Corresponding displacement	δνο	[mm]	1,9	4,3	6,0	2,9
Corresponding displacement	δ∨∞	[mm]	2,9	6,4	9,1	4,4

Hilti metal expansion anchor HST2 and HST2-R	
Performances Displacements under tension and shear loading	Annex C4

Table C4: Characteristic tension resistance for seismic loading for HST2, performance category C1

			М8	M10	M12	M16
Steel failure		·				
HST2						
Characteristic resistance	$N_{Rk,s,seis}$	[kN]	-	31,4	44,8	78,2
Partial safety factor	γ Ms,seis $^{1)}$	[-]	-		1,40	
Pullout failure						
HST2						
Characteristic resistance	$N_{Rk,p,seis}$	[kN]	-	8,0	10,7	18,0
Installation safety factor	γinst	[-]	-		1,00	
Concrete cone failure 2)		•				
HST2						
Installation safety factor	γinst	[-]	-		1,00	
Splitting failure 2)		'				
HST2						
Installation safety factor	γinst	[-]	-		1,00	

¹⁾ In absence of other national regulations

Hilti metal expansion anchor HST2 and HST2-R	
Performances Characteristic tension resistance for performance category C1	Annex C5

²⁾ For concrete cone failure and splitting failure see TR 045

Table C5: Characteristic shear resistance for seismic loading for HST2, performance category C1

			М8	M10	M12	M16
Steel failure						
HST2						
Characteristic resistance	$V_{Rk,s,seis}$	[kN]	-	16,0	27,0	41,3
Partial safety factor	γMs,seis ¹⁾	[-]	-		1,25	
Concrete pryout failure 2)						
HST2						
Installation safety factor	γinst	[-]	-		1,00	
Concrete edge failure 2)						
HST2						
Installation safety factor	γinst	[-]	-		1,00	

¹⁾ In absence of other national regulations

Hilti metal expansion anchor HST2 and HST2-R	
Performances Characteristic shear resistance for performance category C1	Annex C6

²⁾ For concrete pryout failure and concrete edge failure see TR 045

Table C6: Characteristic tension resistance for seismic loading for HST2, performance category C2

			M8	M10	M12	M16
Steel failure						
HST2						
Characteristic resistance	N _{Rk,s,seis}	[kN]	-	31,4	44,8	78,2
Partial safety factor	γMs,seis ¹⁾	[-]	-		1,40	
Pullout failure				•		
HST2						
Characteristic resistance	$N_{Rk,p,seis}$	[kN]	-	3,3	10,0	12,8
Installation safety factor	γinst	[-]	-		1,00	
Concrete cone failure 2)						
HST2						
Installation safety factor	γinst	[-]	-		1,00	
Splitting failure 2)						
HST2						
Installation safety factor	γinst	[-]	-		1,00	

¹⁾ In absence of other national regulations

Table C7: Displacements under tension loads for seismic loading for HST2, performance category C2

			М8	M10	M12	M16
Displacements under tension	on loading					
HST2						
Displacement DLS	$\delta_{\text{N,seis}}$	[mm]	-	1,4	6,7	4,0
Displacement ULS	$\delta_{\text{N,seis}}$	[mm]	-	8,6	15,9	13,3

Hilti metal expansion anchor HST2 and HST2-R	
Performances Characteristic tension resistance and displacements for performance category C2	Annex C7

²⁾ For concrete cone failure and splitting failure see TR 045

Table C8: Characteristic shear resistance for seismic loading for HST2, performance category C2

			М8	M10	M12	M16
Steel failure					•	
HST2						
Characteristic resistance	$V_{Rk,s,seis}$	[kN]	-	16,0	24,2	41,3
Partial safety factor	γMs,seis ¹⁾	[-]	-		1,25	
Concrete pryout failure 2)						
HST2						
Installation safety factor	γinst	[-]	-		1,00	
Concrete edge failure 2)						
HST2						
Installation safety factor	γinst	[-]	-		1,00	

¹⁾ In absence of other national regulations

Table C9: Displacements under shear loads for seismic loading for HST2, performance category C2

			М8	M10	M12	M16
Displacements under tensi	ion loading					
HST2						
Displacement DLS	δ v,seis	[mm]	-	4,7	4,8	5,7
Displacement ULS	δ v,seis	[mm]	-	7,7	7,9	8,9

Hilti metal expansion anchor HST2 and HST2-R	
Performances Characteristic shear resistance and displacements for performance category C2	Annex C8

²⁾ For concrete pryout failure and concrete edge failure see TR 045

Table C10: Characteristic tension resistance under fire exposure for HST2 and HST2-R in cracked and non-cracked concrete

				M8	M10	M12	M16
Steel failure							
HST2 and HST2-R							
	R30	$N_{Rk,s,fi}$	[kN]	0,9	2,5	5,0	9,0
Characteristic resistance	R60	$N_{Rk,s,fi}$	[kN]	0,7	1,5	3,5	6,0
Characteristic resistance	R90	$N_{Rk,s,fi}$	[kN]	0,6	1,0	2,0	3,5
	R120	$N_{Rk,s,fi}$	[kN]	0,5	0,7	1,0	2,0
Pullout failure							
HST2 and HST2-R							
	R30	$N_{Rk,p,fi}$	[kN]	1,3	2,3	3,0	5,0
Characteristic resistance	R60	$N_{Rk,p,fi}$	[kN]				
in concrete ≥ C20/25	R90	$N_{Rk,p,fi}$	[kN]				
	R120	$N_{Rk,p,fi}$	[kN]	1,0	1,8	2,4	4,0
Concrete cone failure							
HST2 and HST2-R							
	R30	N ⁰ Rk,c,fi	[kN]				
Characteristic resistance	R60	N ⁰ Rk,c,fi	[kN]	2,7	5,0	7,4	11,0
in concrete ≥ C20/25	R90	N ⁰ Rk,c,fi	[kN]				
	R120	N ⁰ Rk,c,fi	[kN]	2,2	4,0	5,9	8,8
		S _{cr} ,N	[mm]		4	h _{ef}	
Spacing		Smin	[mm]	50	55	60	80
		Ccr,N	[mm]	mm] 2 h _{ef}			•
Edge distance		C _{min}	[mm]		ire attack from ack from more		

In absence of other national regulations the partial safety factor for resistance under fire exposure $\gamma_{M,fi}=1,0$ is recommended.

Hilti metal expansion anchor HST2 and HST2-R	
Performances Characteristic values of resistance under tension loading under fire exposure in cracked and non-cracked concrete	Annex C9

Table C11: Characteristic shear resistance under fire exposure for HST2 and HST2-R in cracked and non-cracked concrete

				М8	M10	M12	M16
Steel failure without leve	r arm						
HST2 and HST2-R							
	R30	$V_{Rk,s,fi}$	[kN]	0,9	2,5	5,0	9,0
Characteristic resistance	R60	$V_{Rk,s,fi}$	[kN]	0,7	1,5	3,5	6,0
Characteristic resistance	R90	$V_{Rk,s,fi}$	[kN]	0,6	1,0	2,0	3,5
	R120	$V_{Rk,s,fi}$	[kN]	0,5	0,7	1,0	2,0
Steel failure with lever ar	rm						
HST2 and HST2-R							
Characteristic resistance	R30	$M^0_{Rk,s,fi}$	[Nm]	1,0	3,3	8,1	20,6
	R60	M ⁰ Rk,s,fi	[Nm]	0,8	2,4	5,7	14,4
	R90	M ⁰ Rk,s,fi	[Nm]	0,7	1,6	3,2	8,2
	R120	M ⁰ Rk,s,fi	[Nm]	0,6	1,2	2,0	5,1
Concrete pryout failure							
HST2 and HST2-R							
Pryout factor		k ₈	[-]	2,00	2,00	2,20	2,50
	R30	V ⁰ Rk,cp,fi	[kN]				
Characteristic resistance in concrete ≥ C20/25	R60	V ⁰ Rk,cp,fi	[kN]	5,4	10,0	16,0	27,2
	R90	V ⁰ Rk,cp,fi	[kN]				
	R120	V ⁰ Rk,cp,fi	[kN]	4,4	8,0	12,9	21,7
Concrete edge failure							

Concrete edge failure

HST2 and HST2-R

The initial value $V^0_{Rk,c,fi}$ of the characteristic resistance in concrete C20/25 to C50/60 under fire exposure may be determined by: $V^0_{Rk,c,fi} = 0,25 \times V^0_{Rk,c}$ ($\leq R90$) $V^0_{Rk,c,fi} = 0,20 \times V^0_{Rk,c}$ (R120) with $V^0_{Rk,c}$ initial value of the characteristic resistance in cracked concrete C20/25 under normal temperature.

In absence of other national regulations the partial safety factor for resistance under fire exposure $\gamma_{M,fi}=1,0$ is recommended.

Hilti metal expansion anchor HST2 and HST2-R	
Performances	Annex C10
Characteristic values of resistance under shear loading under fire exposure in cracked and non-cracked concrete	

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-15/0435 vom 21. Dezember 2017

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

Hilti Metallspreizdübel HST2 und HST2-R

Mechanischer Dübel zur Verankerung im Beton

Hilti AG Feldkircherstraße 100 9494 Schaan FÜRSTENTUM LIECHTENSTEIN

Hilti Aktiengesellschaft

25 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330232-00-0601

ETA-15/0435 vom 7. August 2017

Z48582.17

Europäische Technische Bewertung ETA-15/0435

Seite 2 von 25 | 21. Dezember 2017

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Europäische Technische Bewertung ETA-15/0435

Seite 3 von 25 | 21. Dezember 2017

Besonderer Teil

1 Technische Beschreibung des Produkts

Der Hilti Bolzenanker HST2 und HST2-R ist ein Dübel aus galvanisch verzinktem Stahl (HST2) oder aus nichtrostendem Stahl (HST2-R), der in ein Bohrloch gesteckt und kraftkontrolliert verankert wird.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäisch Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angabe der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristische Widerstände für statische und quasi-statische Lasten, Verschiebungen	Siehe Anhang C1 bis C4
Charakteristische Widerstände für die seismische Leistungskategorie C1, Verschiebungen	Siehe Anhang C5 bis C6
Charakteristische Widerstände für die seismische Leistungskategorie C2, Verschiebungen	Siehe Anhang C7 bis C8

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Der Dübel erfüllt die Anforderungen der Klasse A1
Feuerwiderstand	Siehe Anhang C9 bis C10

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD 33-0232-00-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

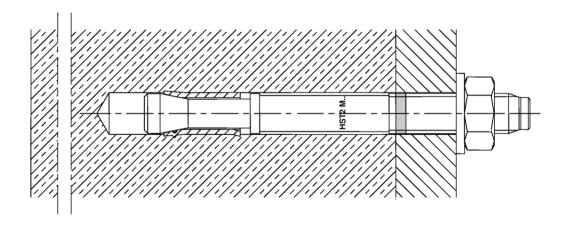
Folgendes System ist anzuwenden: 1

Europäische Technische Bewertung ETA-15/0435

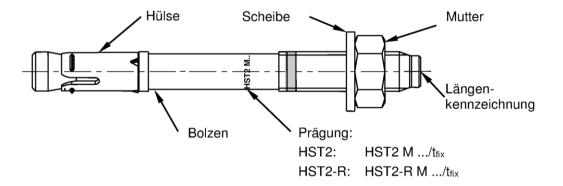
Seite 4 von 25 | 21. Dezember 2017

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Kontrollplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.


Ausgestellt in Berlin am 21. Dezember 2017 vom Deutschen Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Abteilungsleiter


Beglaubigt

Einbauzustand HST2 und HST2-R

Produktbeschreibung HST2 und HST2-R

Hilti Metallspreizanker HST2 und HST2-R	
Produktbeschreibung Einbauzustand, Varianten, Prägung und Kennzeichnung	Anhang A1

Buchstabe			Α	В	С	D	Е	f	П
A . I I	≥	[mm]	38,1	50,8	63,5	76,2	88,9	100,0	100,0
Ankerlänge	<	[mm]	50,8	63,5	76,2	88,9	101,6	100,0	100,0
Buchstabe			F	G	Δ	Н	I	J	K
Ankorlänge	≥	[mm]	101,6	114,3	125,0	127,0	139,7	152,4	165,
Ankerlänge	<	[mm]	114,3	127,0	125,0	139,7	152,4	165,1	177,
Buchstabe			L	М	N	0	Р	Q	R
Ankorlänge	≥	[mm]	177,8	190,5	203,2	215,9	228,6	241,3	254,
Ankerlänge	<	[mm]	190,5	203,2	215,9	228,6	241,3	254,0	279,
Buchstabe			r	S	Т	U	V	W	X
A 1 1"	≥	[mm]	260,0	279,4	304,8	330,2	355,6	381,0	406,
Ankerlänge	<	[mm]	260,0	304,8	330,2	355,6	381,0	406,4	431,
Buchstabe			Υ	Z	AA	BB	СС	DD	EE
Antonia	2	[mm]	431,8	457,2	482,6	508,0	533,4	558,8	584,
Ankerlänge	<	[mm]	457,2	482,6	508,0	533,4	558,8	584,2	609,
Buchstabe			FF	GG	НН	II	JJ	KK	LL
Amboulänna	≥	[mm]	609,6	635,0	660,4	685,8	711,2	736,6	762,
Ankerlänge	<	[mm]	635,0	660,4	685,8	711,2	736,6	762,0	787,
Buchstabe			MM	NN	00	PP	QQ	RR	SS
Ankorlänge	≥	[mm]	787,4	812,8	838,2	863,6	889,0	914,4	939,
Ankerlänge		[mm]	812,8	838,2	863,6	889,0	914,4	939,8	965,

Buchstabe			TT	UU	VV
A placed in the	≥	[mm]	965,2	990,6	1016,0
Ankerlänge	<	[mm]	990,6	1016,0	1041,4

Hilti Metallspreizanker HST2 und HST2-R	
Produktbeschreibung Einbauzustand, Varianten, Prägung und Kennzeichnung	Anhang A2

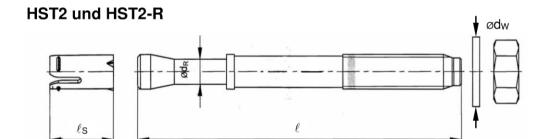


Tabelle A2: Werkstoffe

Bezeichnung	Werkstoff					
HST2	HST2					
Spreizhülse	Nichtrostender Stahl A2					
Bolzen	C-Stahl, galvanisch verzinkt, beschichtet (transparent) Bruchdehnung ($I_0 = 5d$) > 8 %					
Scheibe	C-Stahl, galvanisch verzinkt					
Sechskantmutter	C-Stahl, galvanisch verzinkt					
HST2-R (Nichtroster	nder Stahl A4)					
Spreizhülse	Nichtrostender Stahl A4					
Bolzen	Nichtrostender Stahl A4 oder Duplex A4, Konus beschichtet (transparent) Bruchdehnung (I ₀ = 5d) > 8 %					
Scheibe	Nichtrostender Stahl A4					
Sechskantmutter	Nichtrostender Stahl A4, beschichtet					

Tabelle A3: Abmessungen HST2 und HST2-R

HST2, HST2-R			М8	M10	M12	M16
Maximale Ankerlänge	ℓ_{max}	[mm]	260	280	295	350
Schaftdurchmesser am Konus	dR	[mm]	5,5	7,2	8,5	11,6
Spreizhülsenlänge	ℓs	[mm]	14,8	18,2	22,7	24,3
Scheibendurchmesser	dw ≥	[mm]	15,57	19,48	23,48	29,48

Hilti Metallspreizanker HST2 und HST2-R	
Produktbeschreibung Werkstoffe und Abmessungen	Anhang A3

Angaben zum Verwendungszweck

Verankerungsgrund:

- Bewehrter oder unbewehrter Normalbeton nach EN 206-1:2000.
- Festigkeitsklasse C20/25 bis C50/60 nach EN 206-1:2000.
- Gerissener und ungerissener Beton

Anwendungsbedingungen (Umweltbedingungen):

- Hilti Metallspreizanker HST2 aus galvanisch verzinktem Stahl:
 In Bauteilen unter den Bedingungen trockener Innenräume
- · Hilti Metallspreizanker HST2-R aus nichtrostendem Stahl A4:

Der Anker darf in Bauteilen unter den Bedingungen trockener Innenräume sowie auch im Freien (einschließlich Industrieatmosphäre und Meeresnähe) oder in Feuchträumen verwendet werden, wenn keine besonders aggressiven Bedingungen vorliegen. Zu diesen besonders aggressiven Bedingungen gehören z. B. ständiges abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chorhaltige Atmosphäre in Schwimmhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z. B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

Bemessung:

- Die Befestigungen müssen unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs bemessen werden.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.) anzugeben.
- Die Bemessung von Verankerungen unter statischer und quasistatischer Belastung erfolgt in Übereinstimmung mit:
 - FprEN 1992-4:2016 und EOTA Technical Report TR 055, 12/2016
- Die Bemessung von Verankerungen unter Erdbebenbelastung (gerissener Beton) erfolgt in Übereinstimmung mit:
 - FprEN 1992-4:2016 und EOTA Technical Report TR 045, 2/2013
 - Die Verankerungen sind außerhalb kritischer Bereiche (z. B. plastischer Gelenke) der Betonkonstruktion anzuordnen. Befestigungen bei denen Querkräfte an Ankern mit Hebelarm angreifen, wie z.B. bei einer Abstandsmontage oder einer Montage auf einer Mörtelschicht, sind nicht abgedeckt.
- Die Bemessung von Verankerungen unter Brandbeanspruchung erfolgt in Übereinstimmung mit: FprEN 1992-4:2016 und EOTA Technical Report TR 020, 4/2004
 Bei Anforderungen an den Brandschutz ist sicherzustellen, dass lokale Betonabplatzungen vermieden werden.

Einbau:

- Der Einbau erfolgt durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.
- Der Dübel darf nur einmal verwendet werden.
- Überkopfmontage ist zulässig.

Hilti Metallspreizanker HST2 und HST2-R	
Angaben zum Verwendungszweck	Anhang B1

Tabelle B1: Bohrloch Erstellung

HST2, HST2-R		М8	M10	M12	M16
Hammerbohren (HD)		✓	✓	✓	✓
Diamantbohrverfahren (DD) mit DD EC-1 Diamantbohrgerät und DD-C TS/TL Bohrkronen oder DD-C T2/T4 Bohrkronen DD 30-W Diamantbohrgerät und C+ SPX-T (abrasiv) Bohrkronen	₹ ♦ >	√	√	√	√
Hammerbohren mit Hohlbohrer (HDB) mit TE-CD/YD Hohlbohrern		-	-	✓	✓

Tabelle B2: Bohrloch Reinigung

Handreinigung (MC): Zum Ausblasen von Bohrlöchern wird die Hilti-Handausblaspumpe empfohlen.	
Druckluft Reinigung (CAC): Zum Ausblasen mit Druckluft wird die Verwendung einer Ausblasdüse mit einem Durchmesser von mindestens 3,5 mm empfohlen.	
Automatische Bohrlochreinigung (AC): Die Reinigung wird während des Bohrens mit dem Hilti-Hohlbohrer TE-CD und TE-YD Bohrsystem inklusive Staubsauger durchgeführt.	

Tabelle B3: Anziehen des Metallspreizankers

HST2, HST2-R	М8	M10	M12	M16
Drehmomentschlüssel	✓	✓	✓	✓
Maschinensetzen mit Hilti SIW 6AT-A22 Schlagschrauber und SI-AT-A22 Anzugsmodul	√	√	√	-

Hilti Metallspreizanker HST2 und HST2-R	
Angaben zum Verwendungszweck	Anhang B2

Tabelle B4: Übersicht der Leistungskategorien

Beanspruchung:	HST2, HST2-R
Statische und quasistatische	M8 bis M16
Belastungen	Tabelle : C1 - C3
Seismische	M10 bis M16 (nur HST2)
Leistungskategorie C1/C2	Tabelle : C4 - C9
Statische und quasistatische Belastungen unter Brandbeanspruchung	M8 bis M16 Tabelle : C10 - C11

Hilti Metallspreizanker HST2 und HST2-R

Angaben zum Verwendungszweck

Anhang B3

Tabelle B5: Montagekennwerte für HST2 und HST2-R

HST2, HST2-R			М8	M10	M12	M16
Bohrernenndurchmesser	d_0	[mm]	8	10	12	16
Bohrschneidendurchmesser	d _{cut} ≤	[mm]	8,45	10,45	12,50	16,50
Bohrlochtiefe 1)	h₁ ≥	[mm]	60	74	88	103
Effektive Verankerungstiefe	h _{ef}	[mm]	47	60	70	82
Nominelle Verankerungstiefe	h_{nom}	[mm]	55	69	80	95
Maximales Durchgangsloch im Anbeuteil	df	[mm]	9	12	14	18
Installationsdrehmoment	T _{inst}	[Nm]	20	45	60	110
Maximale Anbauteilhöhe	$t_{\text{fix,max}}$	[mm]	195	200	200	235
Schlüsselweite	SW	[mm]	13	17	19	24

¹⁾ Bei Verwendung des Diamantbohrverfahrens + 5 mm für M8 bis M10 und + 2 mm for M12 bis M24

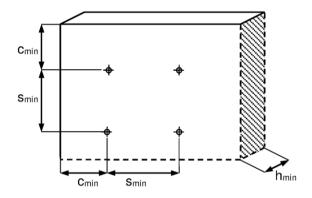

Hilti Metallspreizanker HST2 und HST2-R	
Angaben zum Verwendungszweck Montagekennwerte	Anhang B4

Tabelle B6: Minimale Achs- und Randabstände für HST2 und HST2-R

			М8	M10	M12	M16
Mindestbauteildicke	h _{min,1}	[mm]	100	120	140	160
Gerissener Beton						
HST2						
Mindostophophotond 1)	Smin	[mm]	40	55	60	70
Mindestachsabstand 1)	fürc≥	[mm]	50	70	75	100
Mindostrandahetand 1)	Cmin	[mm]	45	55	55	70
Mindestrandabstand 1)	für s ≥	[mm]	50	90	120	150
HST2-R						
Mindestachsabstand 1)	Smin	[mm]	40	55	60	70
Mindestachsabstand 17	fürc≥	[mm]	50	65	75	100
Mindoctyon dolenton d 1)	Cmin	[mm]	45	50	55	60
Mindestrandabstand 1)	für s ≥	[mm]	50	90	110	160

 $^{^{1)}}$ Lineare Interpolation für s_{min} und c_{min} zulässig

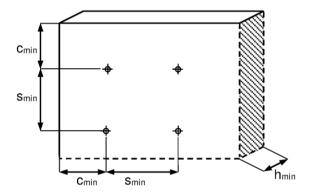

Hilti Metallspreizanker HST2 und HST2-R	
Angaben zum Verwendungszweck Minimale Achs- und Randabstände	Anhang B5

Tabelle B4 fortgesetzt

			М8	M10	M12	M16
Mindestbauteildicke	h _{min,1}	[mm]	100	120	140	160
Ungerissener Beton						
HST2						
Mindostacheahatand 1)	Smin	[mm]	60	55	60	70
Mindestachsabstand 1)	fürc≥	[mm]	50	80	85	110
Mindestrandabstand 1)	Cmin	[mm]	50	55	55	85
Mindestrandabstand 7	fürs≥	[mm]	60	115	145	150
HST2-R						
Mindoctochotond 1)	Smin	[mm]	60	55	60	70
Mindestachsabstand 1)	fürc≥	[mm]	60	70	80	110
Mindestrandabstand 1)	Cmin	[mm]	60	50	55	70
	fürs≥	[mm]	60	115	145	160

 $^{^{1)}}$ Lineare Interpolation für s_{min} und c_{min} zulässig

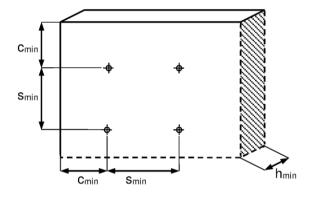
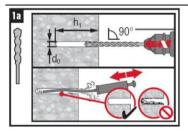
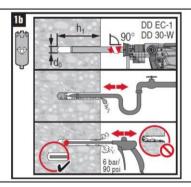

Hilti Metallspreizanker HST2 und HST2-R	
Angaben zum Verwendungszweck Minimale Achs- und Randabstände	Anhang B6

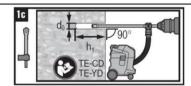
Tabelle B4 fortgesetzt

			М8	M10	M12	M16
Mindestbauteildicke	h _{min,2}	[mm]	80	100	120	140
Gerissener Beton				•		
HST2 und HST2-R						
Mindoctochochotond 1)	Smin	[mm]	50	55	60	80
Mindestachsabstand 1)	für c ≥	[mm]	60	110	100	140
.	Cmin	[mm]	55	70	70	80
Mindestrandabstand 1)	für s ≥	[mm]	60	100	130	180
Ungerissener Beton					•	
HST2 und HST2-R						
Mindostophoshotond 1)	Smin	[mm]	60	55	60	80
Mindestachsabstand 1)	fürc≥	[mm]	75	115	100	140
Mindestrandabstand 1)	Cmin	[mm]	70	70	70	80
	für s ≥	[mm]	80	110	130	180

 $^{^{1)}}$ Lineare Interpolation für s_{min} und c_{min} zulässig

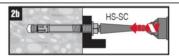

Hilti Metallspreizanker HST2 und HST2-R	
Angaben zum Verwendungszweck Minimale Achs- und Randabstände	Anhang B7

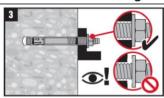



Montageanweisung

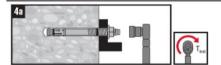
Bohrlocherstellung und Bohrlochreinigung

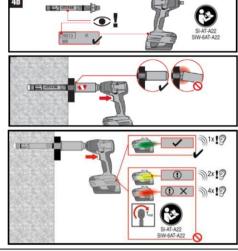
- a) Hammerbohren (HD): M8 bis M16
- b) Diamantbohrverfahren (DD): M8 bis M16
- c) Hammerbohren mit Hilti Hohlbohrern (HDB): M12 bis M16




Setzen des Metallspreizankers

- a) Hammersetzen: M8 bis M16
- b) Maschinensetzen (Setzwerkzeug): M8 bis M16




Kontrolle der Setzung

Anziehen des Metallspreizankers

- a) Drehmomentschlüssel: M8 bis M16
- b) Maschinenanzug: M8 bis M12

Hilti Metallspreizanker HST2 und HST2-R

Angaben zum Verwendungszweck

Montageanweisung

Anhang B8

Tabelle C1: Charakteristische Werte der Zugtragfähigkeit für HST2 und HST2-R im gerissenen und ungerissenen Beton

			М8	M10	M12	M16
Stahlversagen						
HST2						
Charakteristische Zugtragfähigkeit	N _{Rk,s}	[kN]	17,8	31,4	44,8	78,2
Teilsicherheitsbeiwert	γMs ¹⁾	[-]		1,	40	
HST2-R		'				
Charakteristische Zugtragfähigkeit	N _{Rk,s}	[kN]	17,6	30,5	43,1	78,2
Teilsicherheitsbeiwert	γMs ¹⁾	[-]		1,	40	
Herausziehen		'				
HST2						
Charakteristische Zugtragfähigkeit im gerissenen Beton C20/25	$N_{Rk,p}$	[kN]	5,0	9,0	12,0	20,0
Charakteristische Zugtragfähigkeit im ungerissenen Beton C20/25	$N_{Rk,p}$	[kN]	9,0	16,0	20,0	35,0
Montagesicherheitsbeiwert	γinst	[-]		1,	00	
HST2-R						
Charakteristische Zugtragfähigkeit im gerissenen Beton C20/25	$N_{Rk,p}$	[kN]	5,0	9,0	12,0	25,0
Charakteristische Zugtragfähigkeit im ungerissenen Beton C20/25	N _{Rk,p}	[kN]	9,0	16,0	20,0	35,0
Montagesicherheitsbeiwert	γinst	[-]		1,	00	
HST2 und HST2-R						
	ψc	C20/25	1,00			
Erhöhungsfaktoren für gerissenen	ψο	C30/37		1,	22	
und ungerissenen Beton	<u>ψ</u> c	C40/50		1,	41	
	<u>Ψ</u> c	C50/60		1,	55	

¹⁾ Sofern andere nationale Regelungen fehlen

Hilti Metallspreizanker HST2 und HST2-R	
Leistungsfähigkeit Charakteristische Werte der Zugtragfähigkeit im gerissenen und ungerissenen Beton	Anhang C1

Tabelle C1 fortgesetzt

			М8	M10	M12	M16
Betonausbruch und Spalten		·				
HST2 und HST2-R						
Effektive Verankerungstiefe	h _{ef}	[mm]	47	60	70	82
Montagesicherheitsbeiwert	γinst	[-]		1,	00	
Faktor für gerissenen Beton	$k_1 = k_{cr,N}$ [-] 7,7					
Faktor für ungerissenen Beton	$k_1 = k_{\text{ucr},N}$	ı [-]	11,0			
Achsabstand	S _{cr,N} S _{cr,sp}	[mm]		3	h _{ef}	
Randabstand	Ccr,N Ccr,sp	[mm]		1,5	h _{ef}	

Hilti Metallspreizanker HST2 und HST2-R	
Leistungsfähigkeit Charakteristische Werte der Zugtragfähigkeit im gerissenen und ungerissenen Beton	Anhang C2

Tabelle C2: Charakteristische Werte der Quertragfähigkeit für HST2 und HST2-R im gerissenen und ungerissenen Beton

			М8	M10	M12	M16
Stahlversagen ohne Hebelarm						
HST2						
Charakteristische Quertragfähigkeit	$V_{Rk,s}$	[kN]	11,4	21,6	31,4	55,3
Teilsicherheitsbeiwert	γMs ¹⁾	[-]		1,2	25	
Duktilitätsfaktor	k ₇	[-]		1,	,0	
HST2-R						
Charakteristische Quertragfähigkeit	$V_{Rk,s}$	[kN]	15,7	25,3	36,7	63,6
Teilsicherheitsbeiwert	γ Ms $^{1)}$	[-]		1,2	25	
Duktilitätsfaktor	k ₇	[-]		1,	,0	
Stahlversagen mit Hebelarm						
HST2						
Charakteristisches Biegemoment	M^0 Rk,s	[Nm]	25	55	93	240
Teilsicherheitsbeiwert	γ _{Ms} ¹⁾	[-]		1,2	25	
HST2-R						
Charakteristisches Biegemoment	M^0 Rk,s	[Nm]	27	53	93	216
Teilsicherheitsbeiwert	γMs ¹⁾	[-]		1,2	25	
Betonausbruch auf der lastabgew	andten	Seite				
HST2 und HST2-R						
Montagesicherheitsbeiwert	γinst	[-]		1,	,0	
Pryout-Faktor	k ₈	[-]	2,0	2,0	2,2	2,5
Betonkantenbruch						
HST2 und HST2-R						
Wirksame Ankerlänge bei Querkraft	lf	[mm]	47	60	70	82
Wirksamer Außendurchmesser	d_{nom}	[mm]	8	10	12	16
Montagesicherheitsbeiwert	γinst	[-]		1,	,0	

¹⁾ Sofern andere nationale Regelungen fehlen

Hilti Metallspreizanker HST2 und HST2-R	
Leistungsfähigkeit Charakteristische Werte der Quertragfähigkeit im gerissenen und ungerissenen Beton	Anhang C3

Tabelle C3: Verschiebungen unter Zug- und Querlast für HST2 und HST2-R für statische und quasistatische Lasten

			М8	M10	M12	M16
Verschiebungen unter Zuglast						
HST2						
Zuglast im gerissenen Beton	N	[kN]	2,0	4,3	5,7	9,5
7	δνο	[mm]	1,3	0,2	0,1	0,5
Zugehörige Verschiebung	δ _{N∞}	[mm]	1,2	1,0	1,2	1,2
Zuglast im ungerissenen Beton	N	[kN]	3,6	7,6	9,5	16,7
Zugehärige Verschichung	δνο	[mm]	0,2	0,1	0,1	0,4
Zugehörige Verschiebung	δ _{N∞}	[mm]	1,1	1,1	1,1	1,1
HST2-R						
Zuglast im gerissenen Beton	N	[kN]	2,4	4,3	5,7	11,9
Zugehörige Verschiebung	δ_{N0}	[mm]	0,6	0,2	0,8	1,0
	δn∞	[mm]	1,5	1,2	1,4	1,2
Zuglast im ungerissenen Beton	N	[kN]	4,3	7,6	9,5	16,7
Zunala zwiana Mawalai alauna	δ_{N0}	[mm]	0,1	0,1	0,1	0,1
Zugehörige Verschiebung	δν∞	[mm]	1,5	1,2	1,4	1,2
Verschiebungen unter Querlast						
HST2						
Querlast im gerissenen und ungerissenen Beton	V	[kN]	6,5	12,3	17,9	31,6
Zugehärige Verschiehung	δνο	[mm]	2,0	2,3	3,3	4,0
Zugehörige Verschiebung	δν∞	[mm]	3,1	3,4	4,9	6,0
HST2-R		·				
Querlast im gerissenen und ungerissenen Beton	V	[kN]	9,0	14,5	21,0	36,3
Zugehörige Verschiebung	δνο	[mm]	1,9	4,3	6,0	2,9
Zugenonge verschiebung	δ∨∞	[mm]	2,9	6,4	9,1	4,4

Ì	Hilti Metallspreizanker HST2 und HST2-R	
	Leistungsfähigkeit Verschiebungen unter Zug- und Querbelastung	Anhang C4

Tabelle C4: Charakteristische Werte der Zugtragfähigkeit bei Erdbebenbeanspruchung für HST2, Leistungskategorie C1

			M8	M10	M12	M16
Stahlversagen						
HST2						
Charakteristische Zugtragfähigkeit	$N_{Rk,s,seis}$	[kN]	-	31,4	44,8	78,2
Teilsicherheitsbeiwert	γMs,seis ¹⁾	[-]	-		1,40	
Herausziehen						
HST2						
Charakteristische Zugtragfähigkeit	$N_{Rk,p,seis}$	[kN]	-	8,0	10,7	18,0
Montagesicherheitsbeiwert	γinst	[-]	-		1,00	
Betonausbruch 2)						
HST2						
Montagesicherheitsbeiwert	γinst	[-]	-		1,00	
Spalten 2)		•				
HST2						
Montagesicherheitsbeiwert	γinst	[-]	-		1,00	

¹⁾ Sofern andere nationale Regelungen fehlen

Hilti Metallspreizanker HST2 und HST2-R	
Leistungsfähigkeit Charakteristische Werte der Zugtragfähigkeit für Leistungskategorie C1	Anhang C5

²⁾ Für Betonausbruch und Spalten siehe TR 045

Tabelle C5: Charakteristische Werte der Quertragfähigkeit bei Erdbebenbeanspruchung für HST2, Leistungs-kategorie C1

			М8	M10	M12	M16
Stahlversagen						
HST2						
Charakteristische Quertragfähigkeit	$V_{Rk,s,seis}$	[kN]	-	16,0	27,0	41,3
Teilsicherheitsbeiwert	γMs,seis ¹⁾	[-]	-		1,25	
Betonausbruch auf der lastab	gewandten S	Seite 2)				
HST2						
Montagesicherheitsbeiwert	γinst	[-]	-		1,00	
Betonkantenbruch 2)					•	
HST2						
Montagesicherheitsbeiwert	γinst	[-]	-		1,00	

¹⁾ Sofern andere nationale Regelungen fehlen

Hilti Metallspreizanker HST2 und HST2-R	
Leistungsfähigkeit Charakteristische Werte der Quertragfähigkeit für Leistungskategorie C1	Anhang C6

²⁾ Für Betonausbruch auf der lastabgewandten Seite und Betonkantenbruch siehe TR 045

Tabelle C6: Charakteristische Werte der Zugtragfähigkeit bei Erdbebenbeanspruchung für HST2, Leistungskategorie C2

			M8	M10	M12	M16
Stahlversagen						
HST2						
Charakteristische Zugtragfähigkeit	$N_{Rk,s,seis}$	[kN]	-	31,4	44,8	78,2
Teilsicherheitsbeiwert	γMs,seis ¹⁾	[-]	-		1,40	
Herausziehen						
HST2						
Charakteristische Zugtragfähigkeit	$N_{Rk,p,seis}$	[kN]	-	3,3	10,0	12,8
Montagesicherheitsbeiwert	γinst	[-]	-		1,00	
Betonausbruch 2)						
HST2						
Montagesicherheitsbeiwert	γinst	[-]	-		1,00	
Spalten 2)						
HST2						
Montagesicherheitsbeiwert	γinst	[-]	-		1,00	

¹⁾ Sofern andere nationale Regelungen fehlen

Tabelle C7: Verschiebungen unter Zuglast bei Erdbebenbeanspruchung für HST2, Leistungskategorie C2

			М8	M10	M12	M16
Verschiebungen unter Zugla	st					
HST2						
Verschiebung DLS	$\delta_{\text{N,seis}}$	[mm]	-	1,4	6,7	4,0
Verschiebung ULS	$\delta_{\text{N,seis}}$	[mm]	-	8,6	15,9	13,3

Hilti Metallspreizanker HST2 und HST2-R	
Leistungsfähigkeit Charakteristische Werte der Zugtragfähigkeit und Verschiebungen unter Zuglast für Leistungskategorie C2	Anhang C7

²⁾ Für Betonausbruch und Spalten siehe TR 045

Tabelle C8: Charakteristische Werte der Quertragfähigkeit bei Erdbebenbeanspruchung für HST2, Leistungskategorie C2

			M8	M10	M12	M16	
Stahlversagen		·			•		
HST2							
Charakteristische Quertragfähigkeit	$V_{Rk,s,seis}$	[kN]	-	16,0	24,2	41,3	
Teilsicherheitsbeiwert	γMs,seis ¹⁾	[-]	-	1,25			
Betonausbruch auf der lastab	gewandten S	Seite 2)					
HST2							
Montagesicherheitsbeiwert	γinst	[-]	-	1,00			
Betonkantenbruch 2)							
HST2							
Montagesicherheitsbeiwert	γinst	[-]	-		1,00		

¹⁾ Sofern andere nationale Regelungen fehlen

Tabelle C9: Verschiebungen unter Querlast bei Erdbebenbeanspruchung für HST2, Leistungskategorie C2

			М8	M10	M12	M16
Verschiebungen unter Querla	ast					
HST2						
Verschiebung DLS	δ V,seis	[mm]	-	4,7	4,8	5,7
Verschiebung ULS	δ V,seis	[mm]	-	7,7	7,9	8,9

Hilti Metallspreizanker HST2 und HST2-R	
Leistungsfähigkeit Charakteristische Werte der Quertragfähigkeit und Verschiebungen unter Querlast für Leistungskategorie C2	Anhang C8

²⁾ Für Betonausbruch auf der lastabgewandten Seite und Betonkantenbruch siehe TR 045

Tabelle C10: Charakteristische Zugtragfähigkeit bei Brandbeanspruchung für HST2 und HST2-R im gerissenen und ungerissenen Beton

				М8	M10	M12	M16
Stahlversagen							
HST2 und HST2-R							
	R30	$N_{Rk,s,fi}$	[kN]	0,9	2,5	5,0	9,0
Charakteristische Zugtragfähigkeit	R60	$N_{Rk,s,fi}$	[kN]	0,7	1,5	3,5	6,0
	R90	$N_{Rk,s,fi}$	[kN]	0,6	1,0	2,0	3,5
	R120	$N_{Rk,s,fi}$	[kN]	0,5	0,7	1,0	2,0
Herausziehen							
HST2 und HST2-R							
	R30	$N_{Rk,p,fi}$	[kN]				
Charakteristische Zugtragfähigkeit in Beton ≥ C20/25	R60	$N_{Rk,p,fi}$	[kN]	1 1	2,3	3,0	5,0
	R90	$N_{Rk,p,fi}$	[kN]				
	R120	$N_{Rk,p,fi}$	[kN]	1,0	1,8	2,4	4,0
Betonausbruch							
HST2 und HST2-R							
	R30	$N^0_{Rk,c,fi}$	[kN]				
Charakteristische	R60	N ⁰ Rk,c,fi	[kN]	2,7	5,0	7,4	11,0
Zugtragfähigkeit in Beton ≥ C20/25	R90	N ⁰ Rk,c,fi	[kN]				
	R120	N ⁰ Rk,c,fi	[kN]	2,2	4,0	5,9	8,8
Aslasahatand		S _{cr,N}	[mm]		4	1 ef	•
Achsabstand		Smin	[mm]	50	55	60	80
		Ccr,N	[mm]		21	n ef	•
Randabstand		Cmin	[mm]		eitige Brandbe eitige Brandbe		

Sofern andere nationale Regelungen fehlen wird der Teilsicherheitsbeiwert für die Brandbeanspruchung $\gamma_{M,fi}=1,0$ empfohlen.

Hilti Metallspreizanker HST2 und HST2-R	
Leistungsfähigkeit Charakteristische Werte der Zugtragfähigkeit bei Brandbeanspruchung im gerissenen und ungerissenen Beton	Anhang C9

Tabelle C11: Charakteristische Quertragfähigkeit bei Brandbeanspruchung für HST2 und HST2-R im gerissenen und ungerissenen Beton

				M8	M10	M12	M16
Stahlversagen ohne H	ebelarm						
HST2 und HST2-R							
	R30	$V_{Rk,s,fi}$	[kN]	0,9	2,5	5,0	9,0
Charakteristische	R60	$V_{Rk,s,fi}$	[kN]	0,7	1,5	3,5	6,0
Quertragfähigkeit	R90	$V_{Rk,s,fi}$	[kN]	0,6	1,0	2,0	3,5
	R120	$V_{Rk,s,fi}$	[kN]	0,5	0,7	1,0	2,0
Stahlversagen mit Hel	oelarm		•				
HST2 und HST2-R							
	R30	$M^0_{Rk,s,fi}$	[Nm]	1,0	3,3	8,1	20,6
Charakteristisches Biegemoment	R60	M ⁰ Rk,s,fi	[Nm]	0,8	2,4	5,7	14,4
	R90	M ⁰ Rk,s,fi	[Nm]	0,7	1,6	3,2	8,2
	R120	M ⁰ Rk,s,fi	[Nm]	0,6	1,2	2,0	5,1
Betonausbruch auf de	r lastabge	wandten	Seite				
HST2 und HST2-R							
Pryout-Faktor		k ₈	[-]	2,00	2,00	2,20	2,50
	R30	V ⁰ Rk,cp,fi	[kN]				
Charakteristische	R60	V ⁰ Rk,cp,fi	[kN]	5,4	10,0	16,0	27,2
Quertragfähigkeit in Beton ≥ C20/25	R90	V ⁰ Rk,cp,fi	[kN]				
	R120	V ⁰ Rk,cp,fi	[kN]	4,4	8,0	12,9	21,7
Betonkantenbruch					1	ı	
HST2 und HST2-R							

Sofern andere nationale Regelungen fehlen wird der Teilsicherheitsbeiwert für die Brandbeanspruchung $\gamma_{M,fi} = 1,0$ empfohlen.

 $V^0_{\text{Rk,c}}$ = Wert der charakteristischen Tragfähigkeit im gerissenen Beton C20/25 bei Normaltemperatur

Hilti Metallspreizanker HST2 und HST2-R	
Leistungsfähigkeit Charakteristische Werte der Quertragfähigkeit bei Brandbeanspruchung im gerissenen und ungerissenen Beton	Anhang C10

Deutsches Institut für Bautechnik Niemiecki Instytut Techniki Budowlanej

Jednostka aprobująca wyroby budowlane i typy konstrukcji Ośrodek Badawczy Techniki Budowlanej

Instytucja utworzona przez Rząd Federalny i Rządy Krajów Związkowych

Upoważniona zgodnie z Artykułem 29 Rozporządzenia (Unii Europejskiej) Nr 305/2011 oraz członek EOTA (Europejskiej Organizacji ds. Ocen Technicznych Członek EOTA www.eota.eu

Europejska Ocena Techniczna

ETA-15/0435 z 21 grudnia 2017r.

Tłumaczenie angielskie przygotowane przez Niemiecki Instytut Techniki Budowlanej (DIBt) – Wersja oryginalna w języku niemieckim Tłumaczenie z języka angielskiego wykonane na język polski na zlecenie Hilti (Poland) Sp. z o.o

Część ogólna

Jednostka Oceny Technicznej wydająca niniejszą Europejską Ocenę Techniczną

Nazwa handlowa wyrobu budowlanego

Rodzina produktów, do których należy wyrób budowlany

Producent

Zakład produkcyjny

Niniejsza Europejska Ocena Techniczna zawiera

Niniejsza Europejska Ocena Techniczna została wydana zgodnie z Rozporządzeniem (Unii Europejskiej) Nr 305/2011, na podstawie

Niniejsza wersja zastępuje

Niemiecki Instytut Techniki Budowlanej

Metalowa kotwa rozporowa Hilti HST2 i HST2-R

Mechaniczne łączniki do stosowania w betonie

Hilti AG (Spółka Akcyjna)

Feldkircherstraße 100 9494 Schaan KSIĘSTWO LIECHTENSTEIN

Hilti Spółka Akcyjna (Zakład produkcyjny Hilti)

25 stron w tym 3 Załączniki, które stanowią integralną część niniejszej Oceny

EAD 330232-00-0601

ETA-15/0435 wydaną 7 sierpnia 2017r.

Niemiecki Instytut Techniki Budowlanej

Kolonnenstraße 30B | 10829 Berlin | NIEMCY | Telefon: +49 30 78730-0 | Faks: +49 30 78730-320 | E-mail: dip@dibt.de | www.dibt

Z48583.17

Europejska Ocena Techniczna ETA-15/0435

Deutsches Insitut für Bautechnik DIBt

Strona 2 z 25 | 21 grudnia 2017r.

Tłumaczenie angielskie przygotowane przez Niemiecki Instytut Techniki Budowlanej (DIBt) Tłumaczenie z j.angielskiego na j.polski wykonane na zlecenie Hilti (Poland) Sp. z o.o.

Niniejsza Europejska Ocena Techniczna została wydana przez Jednostkę Oceny Technicznej w jej języku oficjalnym. Tłumaczenie niniejszej Europejskiej Oceny Technicznej na inne języki musi w pełni odpowiadać oryginalnie wydanemu dokumentowi i powinno być wyraźnie oznaczone jako takowe.

Udostępnianie niniejszej Europejskiej Oceny Technicznej, włącznie z jej przesyłaniem za pomocą metod elektronicznych, jest dopuszczalne jedynie w całości. Kopiowanie części dokumentu może mieć miejsce, jednakże jedynie za pisemną zgodą wydającej go Jednostki Oceny Technicznej. Każde częściowe kopiowanie musi być wyraźnie oznaczone jako takowe.

Niniejsza Europejska Ocena Techniczna może zostać uchylona przez wydającą ją Jednostkę Oceny Technicznej, w szczególności na podstawie informacji Komisji zgodnie z treścią Artykułu 25 Paragraf 3 Rozporządzenia (Unii Europejskiej) Nr 305/2011.

Strona 3 z 25 | 21 grudnia 2017r.

Tłumaczenie angielskie przygotowane przez Niemiecki Instytut Techniki Budowlanej (DIBt) Tłumaczenie z j.angielskiego na j.polski wykonane na zlecenie Hilti (Poland) Sp. z o.o.

Cześć szczegółowa dokumentu

1. Opis techniczny produktu

Metalowa kotwa rozporowa Hilti HST2 i HST2-R jest kotwą wykonaną ze stali ocynkowanej galwanicznie (oznaczoną jako HST2) lub ze stali nierdzewnej (oznaczoną jako HST2-R), którą umieszcza się w wywierconym otworze i osadza z zastosowaniem rozporu kontrolowanego momentem dokręcającym.

Opis produktu został przedstawiony w Załączniku A.

2. Wyszczególnienie zamierzonego stosowania wyrobu zgodnie ze stosownym Europejskim Dokumentem Oceny

Właściwości użytkowe podane w Rozdziale 3 obowiązują wyłącznie wtedy, gdy kotwa jest stosowana zgodnie ze specyfikacjami i warunkami podanymi w Załączniku B. Sprawdzenia i metody oceny, na których opiera się niniejsza Europejska Ocena Techniczna uwzględniają założenie, że okres użytkowania kotwy będzie wynosił 50 lat. Wskazania dotyczące okresu użytkowania nie mogą być interpretowane jako gwarancja udzielona przez producenta, a jedynie jako przesłanki mające pomóc w wyborze odpowiedniego produktu spełniającego oczekiwania z punktu widzenia ekonomicznie rozsądnego czasu eksploatacji wykonanych robót.

3. Właściwości użytkowe produktu oraz informacje na temat metod użytych do ich oceny

3.1 Wytrzymałość mechaniczna i stateczność (PWdR 1)

Podstawowa charakterystyka	Właściwości
Nośność charakterystyczna pod wpływem obciążeń statycznych i quasi-statycznych, przemieszczenia	Patrz→ Załączniki od C1 do C4
Nośność charakterystyczna dla kategorii właściwości sejsmicznych C1, przemieszczenia	Patrz→ Załączniki od C5 do C6
Nośność charakterystyczna dla kategorii właściwości sejsmicznych C2, przemieszczenia	Patrz→ Załączniki od C7 do C8

3.2 Bezpieczeństwo pożarowe (PWdR 2)

Podstawowa charakterystyka	Właściwości
Reakcja na działanie ognia	Zakotwienia spełniają wymogi dla Klasy A1
Odporność ogniowa	Patrz→ Załączniki od C9 do C10

Zastosowany system oceny i weryfikacji stałości właściwości użytkowych (AVCP) oraz informacje nt. podstawy prawnej

Zgodnie z Europejskim Dokumentem Oceny EAD 330232-00-0601 zastosowanie ma europejski akt prawny: [96/582/EC].

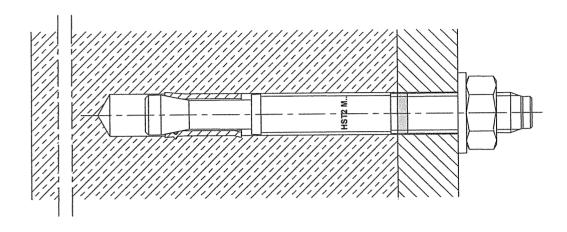
Zastosowanie ma system: 1.

Strona 4 z 25 | 21 grudnia 2017r.

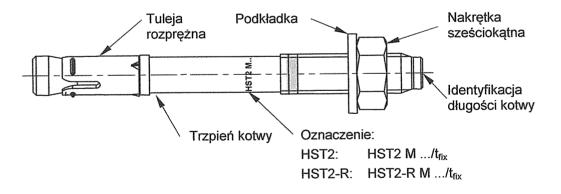
Tłumaczenie angielskie przygotowane przez Niemiecki Instytut Techniki Budowlanej (DIBt) Tłumaczenie z j.angielskiego na j.polski wykonane na zlecenie Hilti (Poland) Sp. z o.o.

Szczegóły techniczne konieczne do wdrożenia systemu oceny i weryfikacji stałości właściwości użytkowych (AVCP) uwzględnione w odpowiednim Europejskim Dokumencie Oceny

Szczegóły techniczne konieczne do wdrożenia systemu oceny i weryfikacji stałości właściwości użytkowych (AVCP) są zawarte w planie kontroli przechowywanym w Niemieckim Instytucie Techniki Budowlanej.


Dokument wydany w Berlinie 21 grudnia 2017r. przez Niemiecki Instytut Techniki Budowlanej

Inżynier Dyplomowany Andreas Kumerow Kierownik Działu


uwierzytelnione przez: G. Lange

Warunki montażu dla kotwy HST2 oraz HST2-R

Opis produktu i oznaczenie dla kotwy HST2 oraz HST2-R

Metalowa kotwa rozporowa Hilti HST2 oraz HST2-R

Opis produktu

Warunki montażu, typy kotew, oznaczenia oraz identyfikacja kotew

Litera			Α	В	C	D	Е	f	Π
	≥	[mm]	38,1	50,8	63,5	76,2	88,9	100,0	100,0
Długość kotwy	<	[mm]	50,8	63,5	76,2	88,9	101,6	100,0	100,0
Litera			F	G	Δ	Н	l	J	K
	≥	[mm]	101,6	114,3	125,0	127,0	139,7	152,4	165,1
Długość kotwy	<	[mm]	114,3	127,0	125,0	139,7	152,4	165,1	177,8
Litera			L	М	N	0	Р	Q	R
	≥	[mm]	177,8	190,5	203,2	215,9	228,6	241,3	254,0
Długość kotwy	<	[mm]	190,5	203,2	215,9	228,6	241,3	254,0	279,4
Litera			r	S	Т	U	٧	W	Х
Długość kotwy	≥	[mm]	260,0	279,4	304,8	330,2	355,6	381,0	406,
	<	[mm]	260,0	304,8	330,2	355,6	381,0	406,4	431,8
Litera			Υ	Z	AA	BB	СС	DD	EE
Discontinuity	≥	[mm]	431,8	457,2	482,6	508,0	533,4	558,8	584,2
Długość kotwy	<	[mm]	457,2	482,6	508,0	533,4	558,8	584,2	609,
Litera			FF	GG	НН	II	JJ	KK	LL
	≥	[mm]	609,6	635,0	660,4	685,8	711,2	736,6	762,
Długość kotwy	<	[mm]	635,0	660,4	685,8	711,2	736,6	762,0	787,
Litera			ММ	NN	00	PP	QQ	RR	SS
	≥	[mm]	787,4	812,8	838,2	863,6	889,0	914,4	939,
Długość kotwy	<	[mm]	812,8	838,2	863,6	889,0	914,4	939,8	965,
Litera			П	UU	W				
Dhanafá kohar:	≥	[mm]	965,2	990,6	1016,0				
Długość kotwy	<	[mm]	990,6	1016,0	1041,4				

Metalowa kotwa rozporowa Hilti HST2 oraz HST2-R

Opis produktu

Warunki montażu, typy kotew, oznaczenia oraz identyfikacja kotew

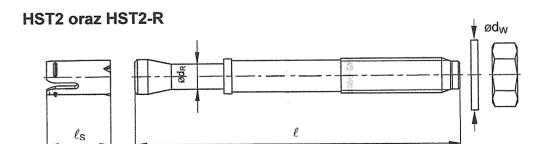


Tabela A2: Materialy

Opis elementu	Materiał
HST2 (Stal węglowa)
Tuleja rozprężna	Stal nierdzewna A2
Trzpień kotwy	Stal węglowa, ocynkowana galwanicznie, powlekana (przezroczysta) wydłużenie przy zerwaniu (l ₀ = 5d) > 8% ciągliwa
Podkładka	Stal węglowa, ocynkowana galwanicznie
Nakrętka sześciokątna	Stal węglowa, ocynkowana galwanicznie
HST2-R (Stal nierdz	ewna A4)
Tuleja rozprężna	Stal nierdzewna A4
Trzpień kotwy	Stal nierdzewna A4 lub stal typu Duplex A4, stożek powlekany (przezroczysty) wydłużenie przy zerwaniu (I ₀ = 5d) > 8% ciągliwa
Podkładka	Stal nierdzewna A4
Nakrętka sześciokątna	Stal nierdzewna A4, powlekana

Tabela A3: Wymiary kotew HST2 oraz HST2-R

HST2, HST2-R			M8	M10	M12	M16
Maksymalna długość kotwy	$\ell_{\sf max}$	[mm]	260	280	295	350
Średnica trzpienia przy stożku	d _R	[mm]	5,5	7,2	8,5	11,6
Długość tulei rozprężnej	ℓ_{S}	[mm]	14,8	18,2	22,7	24,3
Średnica podkładki	d _W ≥	[mm]	15,57	19,48	23,48	29,48

Metalowa kotwa rozporowa Hilti HST2 oraz HST2-R

Opis produktu Materiały i wymiary

Szczegóły techniczne zamierzonego stosowania

Materiały podłoża:

- Zbrojony lub niezbrojony beton o standardowym ciężarze zgodny z normą EN 206-1:2000.
- Klasy wytrzymałości betonu od C20/25 do C50/60 zgodnie z normą EN 206-1:2000.
- · Beton spękany i beton niespękany

Warunki stosowania (warunki środowiskowe):

- Metalowa kotwa rozporowa Hilti HST2 wykonana ze stali ocynkowanej galwanicznie:
 Konstrukcje poddane oddziaływaniu warunków suchych wewnątrz budowli.
- Metalowa kotwa rozporowa Hilti HST2-R wykonana ze stali nierdzewnej klasy A4: Konstrukcje poddane oddziaływaniu warunków suchych wewnątrz budowli, jak również konstrukcje poddane oddziaływaniu warunków atmosfery zewnętrznej (włącznie z atmosferą przemysłową i nadmorską) lub konstrukcje poddane oddziaływaniu warunków panujących wewnętrznych budowli przy stałej wilgoci, jeśli nie występują jednocześnie warunki szczególnie agresywne. Do warunków szczególnie agresywnych zalicza się np. ciągłe, zmieniające się zanurzenie w wodzie morskiej lub strefy rozbryzgu wody morskiej, środowisko basenów krytych o znacznej zawartości chlorków lub atmosfera w znacznym stopniu zanieczyszczona chemicznie (np. instalacje odsiarczania lub tunele drogowe, w których stosowane są substancje odladzające).

Projektowanie:

- Zakotwienia muszą być zaprojektowane pod nadzorem inżyniera doświadczonego w dziedzinie zakotwień i robót betonowych.
- Należy wykonać możliwe do weryfikacji obliczenia oraz opracować rysunki, biorąc pod uwagę obciążenia, które mają być przeniesione przez kotwy. Położenie kotew musi być określone na rysunkach projektowych (np. poprzez podanie położenia kotwy względem zbrojenia lub względem podpór, itd.)
- Zakotwienia poddawane obciążeniom statycznym lub quasi-statycznym muszą być zaprojektowane zgodnie z:
 - FprEN 1992-4:2016 oraz z Raportem Technicznym EOTA TR 055, wydanie z grudnia 2016r.
- Zakotwienia poddawane obciążeniom sejsmicznym (beton spękany) muszą być zaprojektowane zgodnie z:
 - FprEN 1992-4:2016 oraz z Raportem Technicznym EOTA TR 045, wydanie z lutego 2013r.
 - Zakotwienia będą zlokalizowane poza strefami krytycznymi (np. plastycznych przegubów) konstrukcji betonowej. Zamocowania z obciążeniami ścinającymi działającymi na kotwy na ramieniu, takie jak np. montaż dystansowy lub na warstwie podlewki nie są objęte niniejszą Europejską Oceną Techniczną.
- Zakotwienia poddawane oddziaływaniu pożaru muszą być zaprojektowane zgodnie z:
 FprEN 1992-4:2016 oraz z Raportem Technicznym EOTA TR 020, wydanie z kwietnia 2004r.
 W przypadku wymagań odnośnie odporności ogniowej należy wyeliminować możliwość miejscowego odspojenia się otuliny betonu.

Montaż:

- Montaż kotew może być przeprowadzony wyłącznie przez odpowiednio wykwalifikowany personel oraz pod odpowiednim nadzorem osoby odpowiedzialnej za kwestie techniczne na budowie.
- Każda kotwa może być osadzona tylko raz.
- Montaż w pozycji 'nad głowa' jest dopuszczalny.

Metalowa kotwa rozporowa Hilti HST2 oraz HST2-R

Szczegóły techniczne zamierzonego stosowania

Tabela B1: Techniki wiercenia otworów

HST2, HST2-R		M8	M10	W12	M16
Wiercenie udarowe (HD)		√	✓	✓	✓
Wiercenie diamentowe rdzeniowe (DD) przy użyciu					
wiertnicy DD EC-1 oraz wierteł rdzeniowych DD-C TS/TL lub wierteł rdzeniowych DD-C T2/T4	5 D	√	✓	√	✓
wiertnicy DD 30-W oraz wierteł rdzeniowych C+SPX-T (abrazyjnych)					
Wiercenie udarowe przy użyciu wierteł rurowych Hilti TE-CD/YD system wiercenia (HDB)		-	-	✓	✓

Tabela B2: Czyszczenie wywierconych otworów

Czyszczenie ręczne (MC): Ręczna pompka Hilti do wydmuchiwania zwiercin	
Czyszczenie przy użyciu sprężonego powietrza (CAC): Dysza do sprężonego powietrza z otworem wylotowym o średnicy co najmniej 3,5 mm.	
Czyszczenie automatyczne (AC): Czyszczenie odbywa się w trakcie wiercenia przy użyciu systemu Hilti TE-CD oraz TE-YD wyposażonego w odkurzacz przemysłowy.	

Tabela B3: Metody przykładania momentu dokręcającego

HST2, HST2-R		M8	M10	M12	M16
Klucz dynamometryczny	8	✓	✓	✓	✓
Maszynowe dokręcanie przy użyciu wkrętarki udarowej Hilti SIW 6AT-22A oraz adaptacyjnego modułu do dokręcania SI-AT-A22		√	√	✓	<u>-</u>

Metalowa kotwa rozporowa Hilti HST2 oraz HST2-R

Szczegóły techniczne zamierzonego stosowania

Tabela B4: Przegląd kategorii użytkowania oraz kategorii właściwości

Zakotwienia poddawane:	HST2, HST2-R			
Obciążenia statyczne i quasi-statyczne	od M8 do M16 Tabela : od C1 do C3			
Kategoria właściwości sejsmicznych C1/C2	M10 do M16 Tabela : od C4 do C9			
Obciążenia statyczne i quasi-statyczne przy wymogu odporności ogniowej	od M8 do M16 Tabela : od C10 do C11			

Metalowa kotwa rozporowa Hilti HST2 oraz HST2-R

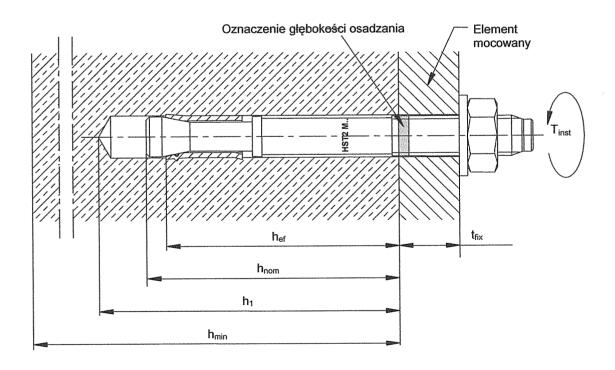

Szczegóły techniczne zamierzonego stosowania

Tabela B5: Parametry montażowe dla kotew HST2 oraz HST2-R

HST2, HST2-R			M8	M10	M12	M16
Nominalna średnica wiertła	d _o	[mm]	8	10	12	16
Średnica tnąca wiertła	d _{cut} ≤	[mm]	8,45	10,45	12,50	16,50
Głębokość wierconego otworu 1)	h₁ ≥	[mm]	60	74	88	103
Czynna głębokość osadzenia	h _{ef}	[mm]	47	60	70	82
Długość włączenia gwintu	h _{nom}	[mm]	55	69	80	95
Maksymalna średnica otworu w elemencie mocowanym	d _f	[mm]	9	12	14	18
Montażowy moment dokręcający	T _{inst}	[Nm]	20	45	60	110
Maksymalna grubość elementu mocowanego	t _{fix,max}	[mm]	195	200	200	235
Rozwartość klucza (do nakrętki)	SW	[mm]	13	17	19	24

¹⁾ W przypadku wiercenia techniką diamentową + 5 mm dla M8 do M10 oraz + 2 mm dla M12 do M16

Metalowa kotwa rozporowa Hilti HST2 oraz HST2-R

Szczegóły techniczne zamierzonego stosowania

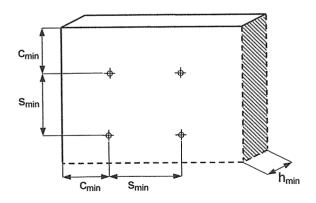

Parametry montażowe

Tabela B6: Minimalny rozstaw kotew oraz minimalna odległość od krawędzi podłoża dla kotew HST2 oraz HST2-R

			M8	M10	M12	M16
Minimalna grubość elementu betonowego	h _{min,1}	[mm]	100	120	140	160
Beton spękany						
HST2						
1)	S _{min}	[mm]	40	55	60	70
Minimalny rozstaw kotew 1)	dla c ≥	[mm]	50	70	75	100
	C _{min}	[mm]	45	55	55	70
Minimalna odległość od krawędzi 1)	dla s ≥	[mm]	50	90	120	150
HST2-R		-1				
1)	S _{min}	[mm]	40	55	60	70
Minimalny rozstaw kotew 1)	dla c ≥	[mm]	50	65	75	100
1)	C _{min}	[mm]	45	50	55	60
Minimalna odległość od krawędzi 1)	dla s ≥	[mm]	50	90	110	160

 $^{^{1)}}$ Dopuszczalna interpolacja liniowa dla s_{min} oraz c_{min}

Metalowa kotwa rozporowa Hilti HST2 oraz HST2-R

Zamierzone stosowanie

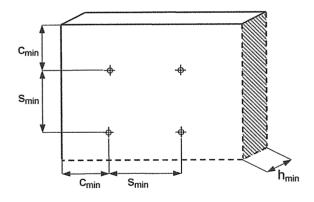

Minimalny rozstaw kotew oraz minimalna odległość od krawędzi podłoża

Tabela B6 ciąg dalszy

			M8	M10	M12	M16
Minimalna grubość elementu betonowego	h _{min,1}	[mm]	100	120	140	160
Beton niespękany						
HST2						
na: · · · · · · · · · · · · · · · · · · ·	S _{min}	[mm]	60	55	60	70
Minimalny rozstaw kotew 1)	dla c ≥	[mm]	50	80	85	110
na: : 1	C _{min}	[mm]	50	55	55	85
Minimalna odległość od krawędzi 1)	dla s ≥	[mm]	60	115	145	150
HST2-R						
	S _{min}	[mm]	60	55	60	70
Minimalny rozstaw kotew 1)	dla c ≥	[mm]	60	70	80	110
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	C _{min}	[mm]	60	50	55	70
Minimalna odległość od krawędzi 1)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	[mm]	60	115	145	160

 $^{^{1)}}$ Dopuszczalna interpolacja liniowa dla s_{min} oraz c_{min}

Metalowa kotwa rozporowa Hilti HST2 oraz HST2-R

Zamierzone stosowanie

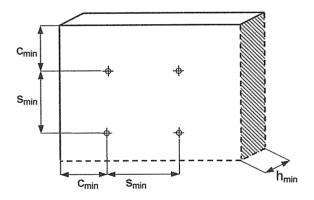

Minimalny rozstaw kotew oraz minimalna odległość od krawędzi podłoża

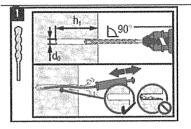
Tabela B6 ciąg dalszy

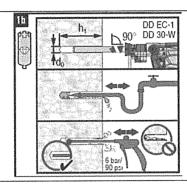
			M8	M10	M12	M16
Minimalna grubość elementu betonowego	h _{min,2}	[mm]	80	100	120	140
Beton spękany						
HST2 oraz HST2-R						
Date	S _{min}	[mm]	50	55	60	80
Minimalny rozstaw kotew	dla c ≥	[mm]	60	110	100	140
	C _{min}	[mm]	55	70	70	80
Minimalna odległość od krawędzi	dla s ≥	[mm]	60	100	130	180
Beton niespękany						
HST2 oraz HST2-R						
	S _{min}	[mm]	60	55	60	80
Minimalny rozstaw kotew	dla c ≥	[mm]	75	115	100	140
	C _{min}	[mm]	70	70	70	80
Minimalna odległość od krawędzi	dla s ≥	[mm]	80	110	130	180

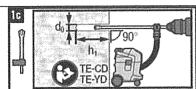
 $^{^{1)}}$ Dopuszczalna interpolacja liniowa dla s_{min} oraz c_{min}

Metalowa kotwa rozporowa Hilti HST2 oraz HST2-R

Zamierzone stosowanie

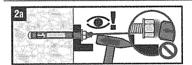

Minimalny rozstaw kotew oraz minimalna odległość od krawędzi podłoża

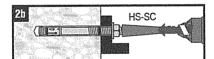


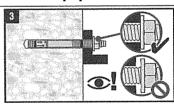

Instrukcja montażu kotew

Wiercenie i czyszczenie otworu

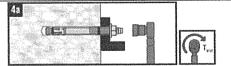
- a) Wiercenie udarowe (HD): od M8 do M16
- b) Wiercenie diamentowe rdzeniowe (DD): od M8 do M16
- c) Wiercenie udarowe przy użyciu wierteł rurowych Hilti (HDB): od M12 do M16

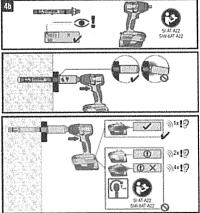





Osadzanie kotew

- a) Osadzanie przy pomocy młotka: od M8 do M16
- b) Osadzanie maszynowe (narzędzie do osadzania kotew): od M8 do M16




Kontrola poprawności osadzenia kotew

Dokręcanie kotew momentem dokręcającym

- a) Kluczem dynamometryczny: od M8 do M16
- b) Dokręcanie maszynowe: od M8 do M12

Metalowa kotwa rozporowa Hilti HST2 oraz HST2-R

Zamierzone stosowanie

Instrukcja montażu kotew

Tabela C1: Nośność charakterystyczna na rozciąganie dla metalowej kotwy rozporowej Hilti HST2 oraz HST2-R w betonie spękanym i niespękanym

					25.40	5540
			M8	M10	M12	M16
Zniszczenie stali						
HST2						
Nośność charakterystyczna	$N_{Rk,s}$	[kN]	17,8	31,4	44,8	78,2
Częściowy współczynnik bezpieczeństwa	γ _{Ms} 1)	[-]		1,4	40	
HST2-R						
Nośność charakterystyczna	$N_{Rk,s}$	[kN]	17,6	30,5	43,1	78,2
Częściowy współczynnik bezpieczeństwa	γ _{Ms} 1)	[-]		1,	40	
Zniszczenie przez wyciągnięcie k	otwy					
HST2						
Nośność charakterystyczna w betonie spękanym klasy C20/25	$N_{Rk,p}$	[kN]	5,0	9,0	12,0	20,0
Nośność charakterystyczna w betonie niespękanym klasy C20/25	$N_{Rk,p}$	[kN]	9,0	16,0	20,0	35,0
Montażowy współczynnik bezpieczeństwa	γinst	[-]		1,	00	
HST2-R						
Nośność charakterystyczna w betonie spękanym klasy C20/25	$N_{Rk,p}$	[kN]	5,0	9,0	12,0	25,0
Nośność charakterystyczna w betonie niespękanym klasy C20/25	$N_{Rk,p}$	[kN]	9,0	16,0	20,0	35,0
Montażowy współczynnik bezpieczeństwa	γinst	[-]		1,	00	
HST2 oraz HST2-R						
	Ψс	C20/25		1,	00	
Współczynnik zwiększający	Ψс	C30/37		1,	22	
dla betonu spękanego i niespękanego	Ψс	C40/50		1,	41	
		C50/60		1,	,55	

¹⁾ W przypadku braku innych przepisów krajowych

Metalowa kotwa rozporowa Hilti HST2 oraz HST2-R

Charakterystyka produktu

Wartości charakterystyczne nośności pod wpływem obciążeń rozciągających w betonie spękanym i niespękanym

Tabela C1 ciąg dalszy

			M8	M10	M12	M16		
Zniszczenie przez wyłamanie s	tożka betor	nu i rozł	upanie podł	oża				
HST2 oraz HST2-R								
Czynna głębokość osadzenia	h _{ef}	[mm]	47	60	70	82		
Montażowy współczynnik bezpieczeństwa	γ̃inst	[-]	1,00					
Współczynnik dla betonu spękanego	$k_1 = k_{cr,N}$	[-]	7,7					
Współczynnik dla betonu niespękanego	$k_1 = k_{ucr,N}$	[-]	11,0					
Rozstaw kotew	S _{cr,N} S _{cr,sp}	[mm]		3	h _{ef}			
Odległość od krawędzi podłoża	C _{cr,N} C _{cr,sp}	[mm]		1,5	h _{ef}			

Metalowa kotwa rozporowa Hilti HST2 oraz HST2-R

Charakterystyka produktu

Wartości charakterystyczne nośności pod wpływem obciążeń rozciągających w betonie spękanym i niespękanym

Tabela C2: Nośność charakterystyczna na ścinanie dla metalowej kotwy rozporowej Hilti HST2 oraz HST2-R w betonie spękanym i niespękanym

			M8	M10	M12	M16	
Zniszczenie stali							
HST2							
Nośność charakterystyczna	$V_{Rk,s}$	[kN]	11,4	21,6	31,4	55,3	
Częściowy współczynnik bezpieczeństwa	1) γ _{Ms}	[-]		1,2	25		
Współczynnik plastyczności	k ₇	[-]		1,	0		
HST2-R							
Nośność charakterystyczna	$V_{Rk,s}$	[kN]	15,7	25,3	36,7	63,6	
Częściowy współczynnik bezpieczeństwa	γ _{Ms} 1)	[-]	1,25				
Współczynnik plastyczności	k ₇	[-]		1,	0,		
Zniszczenie stali z oddziaływanie	m mome	ntu zgina	jącego				
HST2							
Charakterystyczny moment zginający	M ⁰ _{Rk,s}	[Nm]	25	55	93	240	
Częściowy współczynnik bezpiecze	ństwa γ _ν	_{ls} ¹⁾ [-]		1,:	25		
HST2-R							
Charakterystyczny moment zginający	M ⁰ _{Rk,s}	[Nm]	27	53	93	216	
Częściowy współczynnik bezpiecze	ństwa γ _N	1s [-]		1,:	25		
Zniszczenie przez wyłupanie beto	onu						
HST2 oraz HST2-R							
Montażowy współczynnik bezpieczeństwa	γinst	[-]		1	,0		
Współczynnik dla wyłupania	k ₈	[-]	2,0	2,0	2,2	2,5	
Zniszczenie krawędzi podłoża be	tonoweg	0					
HST2 oraz HST2-R				.,		-	
Czynna długość kotwy poddanej obciążeniu ścinającemu	l _f	[mm]	47	60	70	82	
Średnica kotwy	d _{nom}	[mm]	8	10	12	16	
Montażowy współczynnik bezpieczeństwa	γinst	[-]		1	,0		

¹⁾ W przypadku braku innych przepisów krajowych

Metalowa kotwa rozporowa Hilti HST2 oraz HST2-R

Charakterystyka produktu

Wartości charakterystyczne nośności pod wpływem obciążeń ścinających w betonie spękanym i niespękanym

Tabela C3: Przemieszczenia pod wpływem statycznych lub quasi-statycznych obciążeń rozciągających i ścinających dla kotew HST2 oraz HST2-R

			M8	M10	M12	M16
Przemieszczenia pod wpływem o	obciążeń	rozciągaj	ących	L		
HST2						
Obciążenia rozciągające w betonie spękanym	N	[kN]	2,0	4,3	5,7	9,5
0.1	δ_{N0}	[mm]	1,3	0,2	0,1	0,5
Odpowiednie przemieszczenie	δ _{N∞}	[mm]	1,2	1,0	1,2	1,2
Obciążenia rozciągające w betonie niespękanym	Ν	[kN]	3,6	7,6	9,5	16,7
Odpowiednie przemieszczenie	δ_{NO}	[mm]	0,2	0,1	0,1	0,4
	δ _{N∞}	[mm]	1,1	1,1	1,1	1,1
HST2-R						
Obciążenia rozciągające w betonie spękanym	N	[kN]	2,4	4,3	5,7	11,9
Odpowiednie przemieszczenie	δ_{N0}	[mm]	0,6	0,2	8,0	1,0
	δ _{N∞}	[mm]	1,5	1,2	1,4	1,2
Obciążenia rozciągające w betonie niespękanym	N	[kN]	4,3	7,6	9,5	16,7
Ode aviadnia prominazazania	δ_{NO}	[mm]	0,1	0,1	0,1	0,1
Odpowiednie przemieszczenie	δ _{N∞}	[mm]	1,5	1,2	1,4	1,2
Przemieszczenia pod wpływem	obciążer	i ścinający	/ch			
HST2						
Obciążenia ścinające w betonie spękanym i niespękanym	V	[kN]	6,5	12,3	17,9	31,6
Odenia daia amanaia manaia	δ_{V0}	[mm]	2,0	2,3	3,3	4,0
Odpowiednie przemieszczenie	δ _{V∞}	[mm]	3,1	3,4	4,9	6,0
HST2-R						
Obciążenia ścinające w betonie spękanym i niespękanym	٧	[kN]	9,0	14,5	21,0	36,3
Odnowiodnia przemieszczenie	δ_{V0}	[mm]	1,9	4,3	6,0	2,9
Odpowiednie przemieszczenie	δ _V	[mm]	2,9	6,4	9,1	4,4

Metalowa kotwa rozporowa Hilti HST2 oraz HST2-R

Charakterystyka produktu

Przemieszczenia pod wpływem obciążeń rozciągających i ścinających

Tabela C4: Nośność charakterystyczna na rozciąganie dla obciążeń sejsmicznych kotwy HST2, kategoria właściwości C1

			M8	M10	M12	M16
Zniszczenie stali						
HST2					•	·
Nośność charakterystyczna	$N_{Rk,s,seis}$	[kN]	-	31,4	44,8	78,2
Częściowy współczynnik bezpieczeństy	να γ _{Ms,seis}	[-]	-		1,40	
Zniszczenie przez wyciągnięcie kotw	У					
HST2						
Nośność charakterystyczna	N _{Rk,p,seis}	[kN]	-	8,0	10,7	18,0
Montażowy współczynnik bezpieczeństwa	γ̃inst	[-]	-		1,00	
Zniszczenie przez wyłamanie stożka	betonu ²⁾					
HST2						
Montażowy współczynnik bezpieczeńst	wa γ _{inst}	[-]	-		1,00	
Zniszczenie przez rozłupanie podłoż	a ²⁾					
HST2						
Montażowy współczynnik bezpieczeństwa	γ̃inst	[-]	-		1,00	

¹⁾ W przypadku braku innych przepisów krajowych

Metalowa kotwa rozporowa Hilti HST2 oraz HST2-R

Charakterystyka produktu

Charakterystyczna nośność na rozciąganie dla kategorii właściwości C1

²⁾ Dla zniszczenia przez wyłamanie stożka betonu oraz rozłupanie podłoża patrz→ Raport Techniczny TR 045

Tabela C5: Nośność charakterystyczna na ścinanie dla obciążeń sejsmicznych kotwy HST2, kategoria właściwości C1

		1	M12	M16
[kN]	-	16,0	27,0	41,3
[-]	-		1,25	
[-]	-		1,00	
[-]	-		1,00	
	[-]	[-] -	[-] -	[-] - 1,25 [-] - 1,00

¹⁾ W przypadku braku innych przepisów krajowych

Metalowa kotwa rozporowa Hilti HST2 oraz HST2-R

Charakterystyka produktu

Charakterystyczna nośność na ścinanie dla kategorii właściwości C1

²⁾ Dla zniszczenia przez wyłupanie betonu oraz zniszczenia krawędzi podłoża betonowego patrz→ Raport Techniczny TR 045

Tabela C6: Nośność charakterystyczna na rozciąganie dla obciążeń sejsmicznych kotwy HST2, kategoria właściwości C2

			M8	M10	M12	M16
Zniszczenie stali						
HST2						
Nośność charakterystyczna	$N_{Rk,s,seis}$	[kN]	-	31,4	44,8	78,2
Częściowy współczynnik bezpieczeństw	va γ _{Ms,seis} 1)	[-]	-		1,40	
Zniszczenie przez wyciągnięcie kotw	у					
HST2						
Nośność charakterystyczna	$N_{Rk,p,seis}$	[kN]	-	3,3	10,0	12,8
Montażowy współczynnik bezpieczeństwa	γ̃inst	[-]	-		1,00	
Zniszczenie przez wyłamanie stożka	betonu ²⁾					
HST2						
Montażowy współczynnik bezpieczeńst	wa γ _{inst}	[-]	_		1,00	
Zniszczenie przez rozłupanie podłoża	a ²⁾					
HST2					,	
Montażowy współczynnik bezpieczeństwa	γ̃inst	[-]	-		1,00	

¹⁾ W przypadku braku innych przepisów krajowych

Tabela C7: Przemieszczenia pod wpływem sejsmicznych obciążeń rozciągających dla kotwy HST-2, kategoria właściwości C2

			M8	M10	M12	M16
Przemieszczenia pod wpływei	m obciążeń roz	ciągając	ych			
HST-2						
Przemieszczenie DLS	$\delta_{N,seis}$	[mm]	-	1,4	6,7	4,0
Przemieszczenie ULS	$\delta_{N,seis}$	[mm]	-	8,6	15,9	13,3

Metalowa kotwa rozporowa Hilti HST2 oraz HST2-R

Charakterystyka produktu

Charakterystyczna nośność na rozciąganie oraz przemieszczenia dla kategorii właściwości C2

²⁾ Dla zniszczenia przez wyłamanie stożka betonu oraz rozłupanie podłoża patrz→ Raport Techniczny TR 045

Tabela C8: Nośność charakterystyczna na ścinanie dla obciążeń sejsmicznych kotwy HST2, kategoria właściwości C2

		M8	M10	M12	M16
Zniszczenie stali	1				1
HST2					
Nośność charakterystyczna V _{Rk}	x,s,seis [kN]	-	16,0	24,2	41,3
Częściowy współczynnik bezpieczeństwa	γ _{Ms,seis} 1) [-]	-		1,25	
Zniszczenie przez wyłupanie betonu ²⁾					
HST2					
Montażowy współczynnik bezpieczeństwa γ _{inst}	[-]	-		1,00	
Zniszczenie krawędzi podłoża betonowe	go ²⁾				
HST2					
Montażowy współczynnik bezpieczeństwa	γ _{inst} [-]	-		1,00	

¹⁾ W przypadku braku innych przepisów krajowych

Tabela C9: Przemieszczenia pod wpływem sejsmicznych obciążeń ścinających dla kotwy HST-2, kategoria właściwości C2

			M8	M10	M12	M16
Przemieszczenia pod wpływe	m obciążeń ści	nających				
HST-2						
Przemieszczenie DLS	$\delta_{ extsf{N,seis}}$	[mm]		4,7	4,8	5,7
Przemieszczenie ULS	$\delta_{N,seis}$	[mm]	-	7,7	7,9	8,9

Metalowa kotwa rozporowa Hilti HST2 oraz HST2-R

²⁾ Dla zniszczenia przez wyłupanie betonu oraz zniszczenia krawędzi podłoźa betonowego patrz→ Raport Techniczny TR 045

Tabela C10: Nośność charakterystyczna na rozciąganie w warunkach pożaru dla kotwy HST2 oraz HST2-R w betonie spękanym i niespękanym

				M8	M10	W12	M16
Zniszczenie stali							
HST2 oraz HST2-R				100			
	R30	N _{Rk,s,fi}	[kN]	0,9	2,5	5,0	9,0
Nośność	R60	N _{Rk,s,fi}	[kN]	0,7	1,5	3,5	6,0
charakterystyczna	R90	$N_{Rk,s,fi}$	[kN]	0,6	1,0	2,0	3,5
	R120	$N_{Rk,s,fi}$	[kN]	0,5	0,7	1,0	2,0
Zniszczenie przez wycią	gnięcie I	cotwy					
HST2 oraz HST2-R							,
Nośność charakterystyczna w betonie klasy ≥ C20/25	R30	$N_{Rk,p,fi}$	[kN]				
	R60	$N_{Rk,p,fi}$	[kN]	1,3	2,3	3,0	5,0
	R90	$N_{Rk,p,fi}$	[kN]				
	R120	$N_{Rk,p,fi}$	[kN]	1,0	1,8	2,4	4,0
Zniszczenie przez wyłam	anie sto	ożka beto	nu				
HST2 oraz HST2-R							
	R30	$N^0_{Rk,c,fi}$	[kN]				
Nośność	R60	N ⁰ _{Rk,c,fi}	[kN]	2,7	5,0	7,4	11,0
charakterystyczna w betonie ≥ C20/25	R90	N ⁰ _{Rk,c,fi}	[kN]				
	R120	N ⁰ _{Rk,c,fi}	[kN]	2,2	4,0	5,9	8,8
		S _{cr,N}	[mm]		4	h _{ef}	
Rozstaw kotew		S _{min}	[mm]	50	55	60	80
0.111-55 - 4 1		C _{cr,N}	[mm]		2	h _{ef}	
Odległość od krawędzi podłoża		C _{min}	[mm]	Oddziaływanie pożaru z jednej strony: 2 h _{ef} Oddziaływanie pożaru z więcej, niż jednej strony: ≥			

W przypadku braku innych przepisów krajowych dla nośności w warunkach pożaru zalecany jest częściowy współczynnik bezpieczeństwa $\gamma_{M,fi} = 1,0$.

Metalowa kotwa rozporowa Hilti HST2 oraz HST2-R

Charakterystyka produktu

Wartości charakterystyczne nośności pod wpływem obciążeń rozciągających w warunkach pożaru w betonie spękanym i niespękanym

Tabela C5: Nośność charakterystyczna na ścinanie w warunkach pożaru dla kotwy HST2 oraz HST2-R w betonie spękanym i niespękanym

				M8	M10	M12	M16
Zniszczenie stali bez odd	ziaływa	nia mome	ntu zgir	ıającego			
HST2 oraz HST2-R							
	R30	$V_{Rk,s,fi}$	[kN]	0,9	2,5	5,0	9,0
Nośność	R60	$V_{Rk,s,fi}$	[kN]	0,7	1,5	3,5	6,0
charakterystyczna	R90	$V_{Rk,s,fi}$	[kN]	0,6	1,0	2,0	3,5
	R120	$V_{Rk,s,fi}$	[kN]	0,5	0,7	1,0	2,0
Zniszczenie stali z oddzia	itywani	em mome	ntu zgin	ającego			
HST2 oraz HST2-R							
Nośność charakterystyczna	R30	M ⁰ _{Rk,s,fi}	[Nm]	1,0	3,3	8,1	20,6
	R60	M ⁰ _{Rk,s,fi}	[Nm]	0,8	2,4	5,7	14,4
	R90	M ⁰ _{Rk,s,fi}	[Nm]	0,7	1,6	3,2	8,2
	R120	M ⁰ _{Rk,s,fi}	[Nm]	0,6	1,2	2,0	5,1
Zniszczenie przez wyłupa	anie bet	onu					
HST2 oraz HST2-R							
Współczynnik dla wyłupan	ia	k ₈	[-]	2,00	2,00	2,20	2,50
	R30	V ⁰ _{Rk,cp,fi}	[kN]				
Nośność	R60	V ⁰ _{Rk,cp,fi}	[kN]	5,4	10,0	16,0	27,2
charakterystyczna w betonie klasy ≥ C20/25	R90	V ⁰ _{Rk,cp,fi}	[kN]				
•	R120	V ⁰ _{Rk,cp,fi}	[kN]	4,4	8,0	12,9	21,7
Zniszczenie krawędzi po	dłoża b		0				
HST2 oraz HST2-R			***************************************				

Wartość początkowa V⁰_{Rk,c,fi} nośności charakterystycznej w betonie klasy od C20/25 do C50/60 w warunkach pożaru może być określona ze wzoru: $V_{Rk,c,fi}^{0} = 0.25 \times V_{Rk,c}^{0} \quad (\leq R90)$ $V_{Rk,c,fi}^{0} = 0.20 \times V_{Rk,c}^{0} \quad (R120)$

$$V_{Rk,c,fi}^0 = 0.25 \times V_{Rk,c}^0 \quad (\le R90)$$

$$V_{Rk,c,fi}^0 = 0.20 \times V_{Rk,c}^0$$
 (R120)

gdzie $V^0_{Rk,c}$ jest wartością początkową nośności charakterystycznej dla betonu spękanego klasy C20/25 w standardowej temperaturze.

W przypadku braku innych przepisów krajowych dla nośności w warunkach pożaru zalecany jest częściowy współczynnik bezpieczeństwa $\gamma_{M,fi} = 1,0$.

Metalowa kotwa rozporowa Hilti HST2 oraz HST2-R

Charakterystyka produktu

Wartości charakterystyczne nośności na ścinanie w warunkach pożaru w betonie spękanym i niespękanym

koniec	dokumentu

Ja, tłumacz przysięgły języka angielskiego mgr Agnieszka Modrzejewska-Fryżewska, TP 4738/05, zaświadczam zgodność niniejszego tłumaczenia z okazanym mi dokumentem w języku angielskim w Bydgoszczy 14 marca 2018r.

Repertorium nr 10/2018

Tłumacz przysięgły

Apriente Modrejersto-Friensto Agnieszka Modrzejewska-Fryżewska

TŁUMACZ PRZYSIĘGŁY JĘZYKA ANGIELSKIEGO

mgr Agnieszka Modrzejewska-Fryżewska ul. Żmudzka 12a/6

85-028 Bydgoszcz tel. 510 199 883

początek dokumentu
tekst drukowany (25 stron)
tłumaczenie z języka angielskiego

