

HILTI HIT-HY 200-R **INJECTION MORTAR**

ETA-12/0084 (28.08.2019)

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-12/0084 of 28 August 2019

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Injection system Hilti HIT-HY 200-R

Bonded anchor for use in concrete

Hilti Aktiengesellschaft 9494 SCHAAN FÜRSTENTUM LIECHTENSTEIN

Hilti Werke

40 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601

ETA-12/0084 issued on 28 July 2017

European Technical Assessment ETA-12/0084 English translation prepared by DIBt

Page 2 of 40 | 28 August 2019

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-12/0084

Page 3 of 40 | 28 August 2019

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Injection system Hilti HIT-HY 200-R is a bonded anchor consisting of a foil pack with injection mortar Hilti HIT-HY 200-R and a steel element according to Annex A.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for static and quasi-static tension load	See Annex C1 to C8
Characteristic resistance for static and quasi-static shear load	See Annex C2, C4, C6, C8
Displacements for static and quasi-static loads	See Annex C9 to C12
Characteristic resistance for seismic performance categories C1 and C2	See Annex C13 to C17
Durability	See Annex B2

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

European Technical Assessment ETA-12/0084

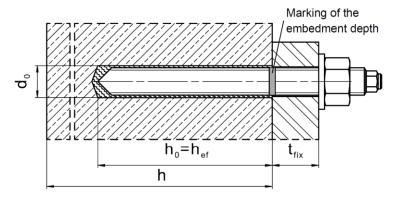
Page 4 of 40 | 28 August 2019

English translation prepared by DIBt

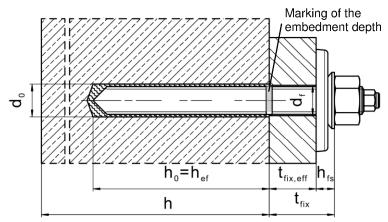
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

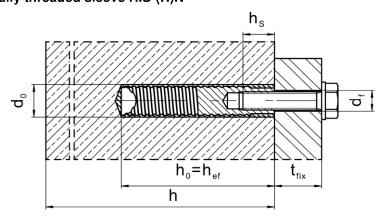
Issued in Berlin on 28 August 2019 by Deutsches Institut für Bautechnik


BD Dipl.-Ing. Andreas Kummerow beglaubigt:
Head of Department Lange

Installed condition


Figure A1:

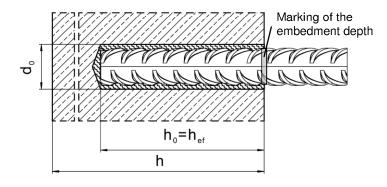
Threaded rod, HAS-U-..., HIT-V-... and AM 8.8


Figure A2:

Threaded rod, HAS-U-..., HIT-V-... and AM 8.8 with Hilti Filling Set

Figure A3:

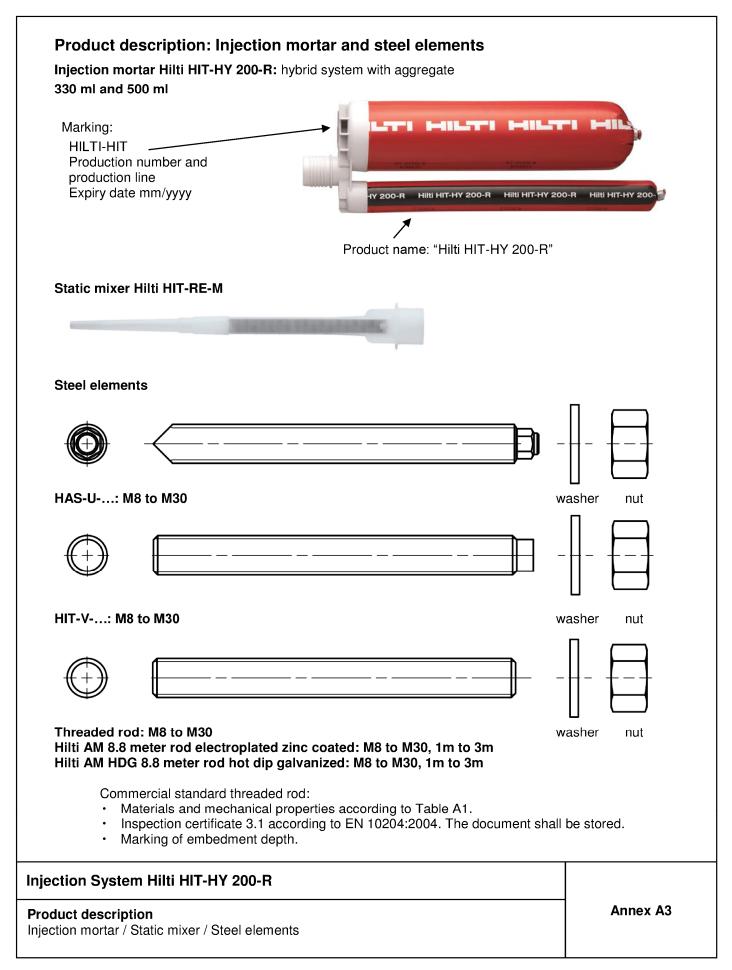
Internally threaded sleeve HIS-(R)N



Injection System Hilti HIT-HY 200-R	
Product description Installed condition	Annex A1

Installed condition

Figure A4: Reinforcing bar



Injection System Hilti HIT-HY 200-R

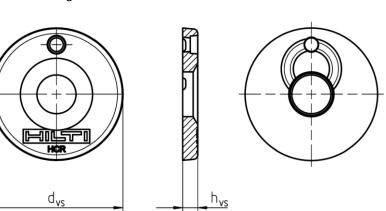
Product description
Installed condition

Annex A2

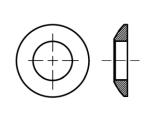
Steel elements

Internally threaded sleeve: HIS-(R)N M8 to M20

Hilti Tension Anchor: HZA M12 to M27 and HZA-R M12 to M24



Reinforcing bar (rebar): ϕ 8 to ϕ 32


- Materials and mechanical properties according to Table A1
- Dimensions according to Annex B6

Hilti Filling Set to fill the annular gap between anchor and fixture

Sealing washer

Spherical washer

Hilti Filling Set			M16	M20	M24
Diameter of sealing washer	dvs	[mm]	56	60	70
Thickness of sealing washer	hvs	[mm]		6	
Thickness of Hilti Filling Set	h _{fS}	[mm]	11	13	15

Injection System Hilti HIT-HY 200-R	
Product description Injection mortar / Static mixer / Steel elements	Annex A4

Table A1: Materials

Designation	Material
Reinforcing bars (reba	ars)
Rebar: EN 1992-1-1: 2004 and AC:2010, Annex C	Bars and de-coiled rods class B or C with f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$
Metal parts made of	zinc coated steel
HAS-U-5.8 (HDG), HIT-V-5.8(F), Threaded rod	Strength class 5.8, $f_{uk} = 500 \text{ N/mm}^2$, $f_{yk} = 400 \text{ N/mm}^2$, Elongation at fracture (l_0 =5d) > 8% ductile Electroplated zinc coated \geq 5 μ m, (F) or (HDG) hot dip galvanized \geq 45 μ m
HAS-U-8.8 (HDG), HIT-V-8.8(F), Threaded rod	Strength class 8.8, $f_{uk} = 800 \text{ N/mm}^2$, $f_{yk} = 640 \text{ N/mm}^2$, Elongation at fracture (I_0 =5d) > 12% ductile Electroplated zinc coated \geq 5 μ m, (F) or (HDG) hot dip galvanized \geq 45 μ m
Hilti Meter rod AM 8.8 (HDG)	Strength class 8.8, $f_{uk}=800$ N/mm², $f_{yk}=640$ N/mm² Elongation at fracture ($l_0=5d$) > 12% ductile, Electroplated zinc coated ≥ 5 μ m, (F) hot dip galvanized ≥ 45 μ m
Hilti tension anchor HZA	Round steel with threaded part: electroplated zinc coated ≥ 5 µm Rebar: Bars class B according to NDP or NCL of EN 1992-1-1/NA
Internally threaded sleeve HIS-N	Electroplated zinc coated ≥ 5 μm
Washer	Electroplated zinc coated \geq 5 μ m, hot dip galvanized \geq 45 μ m
Nut	Strength class of nut adapted to strength class of threaded rod Electroplated zinc coated \geq 5 μ m, (F) hot dip galvanized \geq 45 μ m
Hilti Filling Set (F)	Filling washer: Electroplated zinc coated $\geq 5~\mu m$, (F) hot dip galvanized $\geq 45~\mu m$ Spherical washer: Electroplated zinc coated $\geq 5~\mu m$, (F) hot dip galvanized $\geq 45~\mu m$ Lock nut: Electroplated zinc coated $\geq 5~\mu m$, (F) hot dip galvanized $\geq 45~\mu m$

Injection System Hilti HIT-HY 200-R	
Product description Materials	Annex A5

Table A1: continued

Metal parts made of stainless steel			
corrosion resistance	e classes III according EN 1993-1-4:2006+A1:2015-06		
HAS-U A4, HIT-V-R	For \leq M24: strength class 70, $f_{uk} = 700 \text{ N/mm}^2$, $f_{yk} = 450 \text{ N/mm}^2$; For $>$ M24: strength class 50, $f_{uk} = 500 \text{ N/mm}^2$, $f_{yk} = 210 \text{ N/mm}^2$; Elongation at fracture ($l_0=5d$) $>$ 8% ductile		
Threaded rod	For \leq M24: strength class 70, $f_{uk} = 700 \text{ N/mm}^2$, $f_{yk} = 450 \text{ N/mm}^2$; For $>$ M24: strength class 50, $f_{uk} = 500 \text{ N/mm}^2$, $f_{yk} = 210 \text{ N/mm}^2$; Elongation at fracture (I_0 =5d) $>$ 8% ductile Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014		
Hilti tension anchor HZA-R	Round steel with threaded part: Stainless steel 1.4404, 1.4362, 1.4571 EN 10088-1:2014 Rebar: Bars class B according to NDP or NCL of EN 1992-1-1/NA		
Internally threaded sleeve HIS-RN	Stainless steel 1.4401, 1.4571 EN 10088-1:2014		
Washer	Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014		
Nut	For \leq M24: strength class 70, $f_{uk} = 700 \text{ N/mm}^2$, $f_{yk} = 450 \text{ N/mm}^2$; For $>$ M24: strength class 50, $f_{uk} = 500 \text{ N/mm}^2$, $f_{yk} = 210 \text{ N/mm}^2$; Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014		
Metal parts made of	high corrosion resistant steel		
corrosion resistance	corrosion resistance classes V according EN 1993-1-4:2006+A1:2015-06		
HAS-U HCR, HIT-V-HCR	For \leq M20: $f_{uk} = 800 \text{ N/mm}^2$, $f_{yk} = 640 \text{ N/mm}^2$, For $>$ M20: $f_{uk} = 700 \text{ N/mm}^2$, $f_{yk} = 400 \text{ N/mm}^2$, Elongation at fracture ($l_0=5d$) $>$ 8% ductile		
Threaded rod	For \leq M20: $f_{uk} = 800 \text{ N/mm}^2$, $f_{yk} = 640 \text{ N/mm}^2$, For $>$ M20: $f_{uk} = 700 \text{ N/mm}^2$, $f_{yk} = 400 \text{ N/mm}^2$, Elongation at fracture (I_0 =5d) $>$ 8% ductile High corrosion resistant steel 1.4529, 1.4565 EN 10088-1:2014		
Washer	High corrosion resistant steel 1.4529, 1.4565 EN 10088-1:2014		
Nut	For \leq M20: $f_{uk} = 800 \text{ N/mm}^2$, $f_{yk} = 640 \text{ N/mm}^2$, For $>$ M20: $f_{uk} = 700 \text{ N/mm}^2$, $f_{yk} = 400 \text{ N/mm}^2$, High corrosion resistant steel 1.4529, 1.4565 EN 10088-1:2014		

Injection System Hilti HIT-HY 200-R	
Product description Materials	Annex A6

Specifications of intended use

Anchorages subject to:

- Static and quasi static loading.
- Seismic performance category C1 and C2 (see Table B1).

Base material:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206-1:2013+A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206-1:2013+A1:2016.
- · Cracked and uncracked concrete.

Temperature in the base material:

- at installation
 - -10 °C to +40 °C for the standard variation of temperature after installation
- · in-service

Temperature range I: -40 °C to +40 °C

(max. long term temperature +24 °C and max. short term temperature +40 °C)

Temperature range II: -40 °C to +80 °C

(max. long term temperature +50 °C and max. short term temperature +80 °C)

Temperature range III: -40 °C to +120 °C

(max. long term temperature +72 °C and max. short term temperature +120 °C)

Table B1: Specifications of intended use

	HIT-HY 200-R with			
Elements	HAS-U, HIT-V, AM 8.8	Rebar	HZA(-R)	HIS-(R)N
Hammer drilling with hollow drill bit TE-CD or TE-YD	✓	✓	√	√
Hammer drilling	✓	✓	✓	✓
Diamond drilling with roughening tool TE-YRT	✓	✓	✓	✓
Static and quasi static loading in cracked and uncracked concrete	M8 to M30	φ 8 to φ 32	M12 to M27	M8 to M20
Seismic performance category C1	M10 to M30	φ 10 to φ 32	M12 to M27	-
Seismic performance category C2	M16 to M24, HAS-U 8.8, HIT-V 8.8, AM 8.8, HAS-U 8.8 HDG, HIT-V-F 8.8, AM HDG 8.8 Commercial standard rod (electroplated zinc coated only)	-	-	-

Injection System Hilti HIT-HY 200-R	
Intended Use Specifications	Annex B1

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according EN 1993-1-4:2006+A1:2015-06 corresponding to corrosion resistance classes Table A1 Annex A6. (stainless steels)

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- The anchorages are designed in accordance with: EN 1992-4:2018 and EOTA Technical Report TR 055.

Installation:

- Use category: dry or wet concrete (not in flooded holes) for all drilling techniques
- · Drilling technique:
 - · Hammer drilling,
 - · Hammer drilling with Hilti hollow drill bit TE-CD, TE-YD,
 - · Diamond coring with roughening with Hilti roughening tool TE-YRT.
- Installation direction D3: downward, horizontal and upward (e.g. overhead) installation admissible for all elements.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Injection System Hilti HIT-HY 200-R	
Intended Use Specifications	Annex B2

Table B2: Installation parameters of threaded rod, HAS-U-..., HIT-V-... and AM 8.8

Threaded rod, HAS-U, HIT	М8	M10	M12	M16	M20	M24	M27	M30		
Diameter of element	d	[mm]	8	10	12	16	20	24	27	30
Nominal diameter of drill bit	d_0	[mm]	10	12	14	18	22	28	30	35
Effective embedment depth and drill hole depth		[mm]	60 to 160	60 to 200	70 to 240	80 to 320	90 to 400	96 to 480	108 to 540	120 to 600
Maximum diameter of clearance hole in the fixture	d _f	[mm]	9	12	14	18	22	26	30	33
Thickness of Hilti Filling Set	h _{fs}	[mm]	-	-	-	11	13	15	-	-
Effective fixture thickness with Hilti Filling Set	t _{fix,eff}	[mm]	$t_{\text{fix,eff}} = t_{\text{fix}} - h_{\text{fs}}$							
Minimum thickness of concrete member	h _{min}	[mm]		h _{ef} + 30 ≥ 100 mm						
Maximum torque moment	T _{max}	[Nm]	10	20	40	80	150	200	270	300
Minimum spacing	Smin	[mm]	40 50 60		75	90	115	120	140	
Minimum edge distance	Cmin	[mm]	40	45	45	50	55	60	75	80

Marking:

Steel grade number and length identification letter: e.g. 8L

HIT-V-...

Marking:

5.8 - | = HIT-V-5.8 M...x | 5.8F - | = HIT-V-5.8F M...x | 8.8 - | = HIT-V-8.8 M...x | 8.8F - | = HIT-V-8.8F M...x | R - | = HIT-V-R M...x | HCR - | = HIT-V-HCR M...x |

Hilti meter rod AM (HDG) 8.8

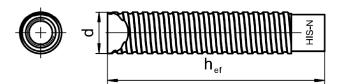

Injection System Hilti HIT-HY 200-R	
Intended Use Installation parameters of threaded rod, HAS-U, HIT-V and AM 8.8	Annex B3

Table B3: Installation parameters of internally threaded sleeve HIS-(R)N

Internally threaded sleeve HIS-(R)	М8	M10	M12	M16	M20		
Outer diameter of sleeve	d	[mm]	12,5	16,5	20,5	25,4	27,6
Nominal diameter of drill bit	d_0	[mm]	14	18	22	28	32
Effective embedment depth and drill hole depth	$h_{\text{ef}} = h_0 $	[mm]	90	110	125	170	205
Maximum diameter of clearance hole in the fixture	df	[mm]	9	12	14	18	22
Minimum thickness of concrete member	h _{min}	[mm]	120	150	170	230	270
Maximum torque moment	T_{max}	[Nm]	10	20	40	80	150
Thread engagement length min-ma	x h₅	[mm]	8-20	10-25	12-30	16-40	20-50
Minimum spacing	Smin	[mm]	60	75	90	115	130
Minimum edge distance	Cmin	[mm]	40	45	55	65	90

Internally threaded sleeve HIS-(R)N...

- Marking:

Identifying mark - HILTI and embossing "HIS-N" (for C-steel) embossing "HIS-RN" (for stainless steel)

Injection System Hilti HIT-HY 200-R	
Intended Use Installation parameters of internally threaded sleeve HIS-(R)N	Annex B4

Table B4: Installation parameters of Hilti tension anchor HZA-R

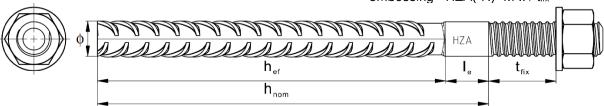

Hilti tension anchor HZA-R			M12	M16	M20	M24	
Rebar diameter	ф	[mm]	12	16	20	25	
Nominal embedment depth and drill hole depth	$h_{nom} = h_0$	[mm]	170 to 240	180 to 320	190 to 400	200 to 500	
Effective embedment depth (hef = hnom - le)	h _{ef}	[mm]	h _{nom} — 100				
Length of smooth shaft	le	[mm]	100				
Nominal diameter of drill bit	d ₀	[mm]	16	20	25	32	
Maximum diameter of clearance hole in the fixture 1)	df	[mm]	14	18	22	26	
Maximum torque moment	T _{max}	[Nm]	40	80	150	200	
Minimum thickness of concrete member	h _{min}	[mm]	h _{nom} + 2·d ₀				
Minimum spacing	Smin	[mm]	65	80	100	130	
Minimum edge distance	Cmin	[mm]	45	50	55	60	

Table B5: Installation parameters of Hilti tension anchor HZA

Hilti tension anchor HZA	M12	M16	M20	M24	M27		
Rebar diameter	ф	[mm]	12	16	20	25	28
Nominal embedment depth and drill hole depth	h _{nom} = h ₀	[mm]	90 to 240	100 to 320	110 to 400	120 to 500	140 to 560
Effective embedment depth (hef = hnom - le)	h _{ef}	[mm]	h _{nom} – 20				
Length of smooth shaft	l _e	[mm]	20				
Nominal diameter of drill bit	d_0	[mm]	16	20	25	32	35
Maximum diameter of clearance hole in the fixture 1)	df	[mm]	14	18	22	26	30
Maximum torque moment	T_{max}	[Nm]	40	80	150	200	270
Minimum thickness of concrete member	h _{min}	[mm]	h _{nom} + 2·d₀				
Minimum spacing s _{min}			65	80	100	130	140
Minimum edge distance	Cmin	[mm]	45	50	55	60	75

Marking:

embossing "HZA(-R)" M .. / tfix

Injection System Hilti HIT-HY 200-R	
Intended Use Installation parameters of Hilti tension anchor HZA-(R)	Annex B5

Table B6: Installation parameters of reinforcing bar

Reinforcing bar (rebar)			ф8	ф 10	ф	12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Diameter	ф	[mm]	8	10	1	2	14	16	20	25	26	28	30	32
Effective embedment depth and drill hole depth	$h_{\text{ef}} = h_0$	[mm]	60 to 160	60 to 200	7 to 24	-	75 to 280	80 to 320	90 to 400	100 to 500	104 to 520	112 to 560	120 to 600	128 to 640
Nominal diameter of drill bit	d ₀	[mm]	10 / 12 ¹⁾	12 / 14 ¹⁾	14 ¹⁾	16 ¹⁾	18	20	25	32	32	35	37	40
Minimum thickness of concrete member	h _{min}	[mm]		_{ef} + 30					h	_{ef} + 2·	d ₀			
Minimum spacing	Smin	[mm]	40	0 50 60		70	80	100	125	130	140	150	160	
Minimum edge distance	Cmin	[mm]	40	45	4	5	50	50	65	70	75	75	80	80

¹⁾ Each of the two given values can be used.

Reinforcing bar

For rebar bolt

- Minimum value of related rib area f_{R,min} according to EN 1992-1-1:2004+AC:2010
- Rib height of the bar h_{rib} shall be in the range 0,05·φ ≤ h_{rib} ≤ 0,07·φ
 (φ: Nominal diameter of the bar; h_{rib}: Rib height of the bar)

Injection System Hilti HIT-HY 200-R	
Intended Use	Annex B6
Installation parameters of reinforcing bar (rebar)	

Table B7: Maximum working time and minimum curing time Hilti-HY 200-R

Temperature in the base material T ¹⁾	Maximum working time twork	Minimum curing time t _{cure}
-10 °C to -5 °C	3 hours	20 hours
> -5 °C to 0 °C	2 hours	8 hours
> 0 °C to 5 °C	1 hour	4 hours
> 5 °C to 10 °C	40 min	2,5 hours
> 10 °C to 20 °C	15 min	1,5 hours
> 20 °C to 30 °C	9 min	1 hour
> 30 °C to 40 °C	6 min	1 hour

¹⁾ The minimum temperature of the injection mortar Hilti HIT-HY 200-R during installation is 0°C

Injection System Hilti HIT-HY 200-R	
Intended Use	Annex B7
Maximum working time and minimum curing time	

Table B8: Parameters of cleaning and setting tools

	Elem	ents				Installa- tion			
Threaded rod, HAS-U, HIT-V, AM 8.8	HIS-(R)N	Rebar	HZA(-R)	Hamme	er drilling Diamond coring Hollow Roughening drill bit tool		Roughening	Brush	Piston plug
	•	***********				€ •		***************************************	
size	size	size	size	d ₀ [mm]	d ₀ [mm]	d ₀ [mm]	d₀ [mm]	HIT-RB	HIT-SZ
M8	-	φ8	-	10	-	-	-	10	-
M10	-	φ8 / φ10	-	12	12 ¹)	-	-	12	12
M12	М8	φ10 / φ12	-	14	14 ¹⁾	-	-	14	14
-	-	φ12	M12	16	16	-	-	16	16
M16	M10	φ14	-	18	18	18	18	18	18
-	-	φ16	M16	20	20	20	20	20	20
M20	M12	-	-	22	22	22	22	22	22
-	-	φ20	M20	25	25	25	25	25	25
M24	M16	-	ı	28	28	28	28	28	28
M27	-	-	-	30	-	-	-	30	30
-	M20	φ25 / φ26	M24	32	32	32	32	32	32
M30	-	φ28	M27	35	35	35	35	35	35
-	-	φ30	-	37	-	-	-	37	37
-	-	φ32	-	40	-	-	-	40	40

¹⁾ To be used in combination with Hilti vacuum cleaner with suction volume ≥ 61 l/s (VC 20/40 –Y in corded mode only).

Cleaning alternatives

Manual Cleaning (MC):

Hilti hand pump for blowing out drill holes with diameters $d_0 \le 20$ mm and drill hole depths $h_0 \le 10 \cdot d$.

Compressed air cleaning (CAC):

Air nozzle with an orifice opening of minimum 3,5 mm in diameter.

Automatic Cleaning (AC):

Cleaning is performed during drilling with Hilti TE-CD and TE-YD drilling system including vacuum cleaner.

Injection System Hilti HIT-HY 200-R

Intended Use

Parameters of cleaning and setting tools Cleaning alternatives **Annex B8**

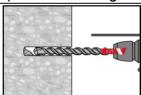
Table B9: Parameters for use of the Hilti Roughening tool TE-YRT

	Associated	components	
Diamon	d coring	Roughening tool TE-YRT	Wear gauge RTG
()			
d₀ [mm]		de [mm]	size
nominal	measured	d₀ [mm]	SIZE
18	17,9 to 18,2	18	18
20	19,9 to 20,2	20	20
22	21,9 to 22,2	22	22
25	24,9 to 25,2	25	25
28	27,9 to 28,2	28	28
30	29,9 to 30,2	30	30
32	31,9 to 32,2	32	32
35	34,9 to 35,2	35	35

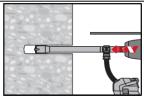
Table B10: Installation parameters for use of the Hilti Roughening tool TE-YRT

	Roughening time t _{roughen}	Minimum blowing time t _{blowing}
h _{ef} [mm]	troughen [sec] = hef [mm] / 10	tblowing [sec] = troughen [sec] + 20
0 to 100	10	30
101 to 200	20	40
201 to 300	30	50
301 to 400	40	60
401 to 500	50	70
501 to 600	60	80

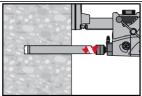
Hilti roughening tool TE-YRT and wear gauge RTG


Injection System Hilti HIT-HY 200-R	
Intended Use Parameters for use of the Hilti Roughening tool TE-YRT	Annex B9

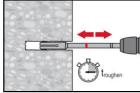
Installation instruction


Hole drilling

a) Hammer drilling


Drill hole to the required embedment depth with a hammer drill set in rotation-hammer mode using an appropriately sized carbide drill bit.

b) Hammer drilling with Hilti hollow drill bit

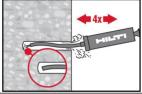

Drill hole to the required embedment depth with an appropriately sized Hilti TE-CD or TE-YD hollow drill bit attached to Hilti vacuum cleaner VC 20/40 (-Y) (suction volume ≥ 57 l/s) with automatic cleaning of the filter activated. This drilling system removes the dust and cleans the drill hole during drilling when used in accordance with the user's manual. When using TE-CD size 12 and 14 refer to Table B8. After drilling is completed, proceed to the "injection preparation" step in the installation instruction.

c) Diamond coring with roughening with Hilti roughening tool TE-YRT:

Diamond coring is permissible when suitable diamond core drilling machines and the corresponding core bits are used.

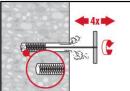
For the use in combination with Hilti roughening tool TE-YRT see parameters in Table B10.

Before roughening water needs to be removed from the drill hole. Check usability of the roughening tool with the wear gauge RTG. Roughen the drill hole over the whole length to the required hef.

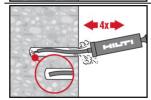

Drill hole cleaning

Just before setting an anchor, the drill hole must be free of dust and debris. Inadequate hole cleaning = poor load values.

Manual Cleaning (MC)


Uncracked concrete only.

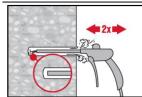
For drill hole diameters $d_0 \le 20$ mm and drill hole depths $h_0 \le 10 \cdot d$.



The Hilti hand pump may be used for blowing out drill holes up to diameters $d_0 \le 20$ mm and embedment depths up to $h_{ef} \le 10 \cdot d$.

Blow out at least 4 times from the back of the drill hole until return air stream is free of noticeable dust.

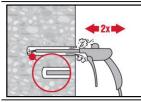
Brush 4 times with the specified brush (see Table B8) by inserting the steel brush Hilti HIT-RB to the back of the hole (if needed with extension) in a twisting motion and removing it. The brush must produce natural resistance as it enters the drill hole (brush $\emptyset \ge \text{drill hole} \emptyset$) - if not the brush is too small and must be replaced with the proper brush diameter.



Blow out again with the Hilti hand pump at least 4 times until return air stream is free of noticeable dust.

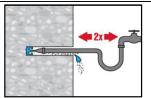
Injection System Hilti HIT-HY 200-R	
Intended Use Installation instructions	Annex B10

Compressed air cleaning (CAC) for all drill hole diameters do and all drill hole depths ho

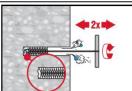


Blow 2 times from the back of the hole (if needed with nozzle extension) over the hole length with oil-free compressed air (min. 6 bar at 6 m³/h) until return air stream is free of noticeable dust.

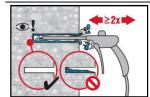
For drill hole diameters \geq 32 mm the compressor has to supply a minimum air flow of 140 m³/h.



Brush 2 times with the specified brush (see Table B8) by inserting the steel brush Hilti HIT-RB to the back of the hole (if needed with extension) in a twisting motion and removing it. The brush must produce natural resistance as it enters the drill hole (brush $\emptyset \ge \text{drill hole }\emptyset$) - if not the brush is too small and must be replaced with the proper brush diameter.

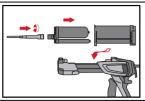


Blow again with compressed air 2 times until return air stream is free of noticeable dust.


Cleaning of diamond cored holes with roughening with Hilti roughening tool TE-YRT.

Flush 2 times by inserting a water hose (water-line pressure) to the back of the hole until water runs clear.

Brush 2 times with the specified brush (see Table B8) by inserting the steel brush Hilti HIT-RB to the back of the hole (if needed with extension) in a twisting motion and removing it. The brush must produce natural resistance as it enters the drill hole (brush $\emptyset \ge \text{drill hole }\emptyset$) - if not the brush is too small and must be replaced with the proper brush diameter.



Blow 2 times from the back of the hole (if needed with nozzle extension) over the whole length with oil-free compressed air (min. 6 bar at 6 m 3 /h) until return air stream is free of noticeable dust and water. Remove all water from the drillhole until drillhole is completely dried before mortar injection. For drill hole diameters \geq 32 mm the compressor has to supply a minimum air flow of 140 m 3 /h.

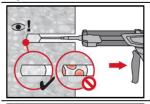
Injection System Hilti HIT-HY 200-R	
Intended Use Installation instructions	Annex B11

Injection preparation

Tightly attach Hilti mixing nozzle HIT-RE-M to foil pack manifold. Do not modify the mixing nozzle.

Observe the instruction for use of the dispenser.

Check foil pack holder for proper function. Insert foil pack into foil pack holder and put holder into dispenser.

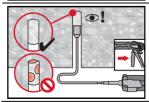


The foil pack opens automatically as dispensing is initiated. Depending on the size of the foil pack, an initial amount of adhesive has to be discarded. Discarded quantities are

2 strokes for 330 ml foil pack, 3 strokes for 500 ml foil pack,

4 strokes for 500 ml foil pack ≤ 5 °C.

Inject adhesive from the back of the drill hole without forming air voids.

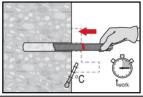


Inject the adhesive starting at the back of the hole, slowly withdrawing the mixer with each trigger pull.

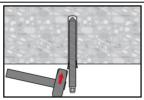
Fill approximately 2/3 of the drill hole to ensure that the annular gap between the anchor and the concrete is completely filled with adhesive along the embedment length. In water saturated concrete it is required to set the fastener immediately after cleaning the drillhole.

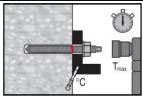
After injection is completed, depressurize the dispenser by pressing the release trigger. This will prevent further adhesive discharge from the mixer.

Overhead installation and/or installation with embedment depth $h_{\text{ef}} > 250 \text{mm}$. For overhead installation the injection is only possible with the aid of extensions and piston plugs. Assemble HIT-RE-M mixer, extension(s) and appropriately sized piston plug (see Table B8). Insert piston plug to back of the hole and inject adhesive. During injection the piston plug will be naturally extruded out of the drill hole by the adhesive pressure.

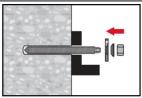

Injection System Hilti HIT-HY 200-R

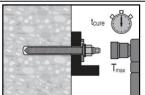
Intended Use
Installation instructions


Annex B12

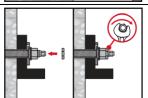

Setting the element

Before use, verify that the element is dry and free of oil and other contaminants. Mark and set element to the required embedment depth before working time t_{work} (see Table B7) has elapsed.

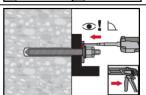

For overhead installation use piston plugs and fix embedded parts with e.g. wedges (Hilti HIT-OHW).


Loading the anchor: After required curing time t_{cure} (see Table B7) the anchor can be loaded

The applied installation torque shall not exceed the values T_{max} given in Table B2 to Table B5.


Installation of Hilti Filling Set

Use Hilti Filling Set with standard nut. Observe the correct orientation of filling washer and spherical washer.



The applied installation torque shall not exceed the values T_{max} given in Table B2 to Table B5.

Optional:

Installation of lock nut. Tighten with a 1/4 to 1/2 turn. (Not for size M24.)

Fill the annular gap between the anchor rod and fixture with 1-3 strokes of Hilti injection mortar HIT-HY 200 R.

Follow the installation instructions supplied with the HIT-HY 200 R foil pack. After required curing time t_{cure} the anchor can be loaded.

ı	njection System Hilti HIT-HY 200-R	
1 -	ntended Use nstallation instructions	Annex B13

Table C1: Essential characteristics for threaded rod, HAS-U-..., HIT-V-... and AM 8.8 under tension load in concrete

Threaded rod, HAS-U, HIT-V and	Threaded rod, HAS-U, HIT-V and AM 8.8				M12	M16	M20	M24	M27	M30
Installation safety factor										
Hammer drilling	γinst	[-]	1,0							
Hammer drilling with Hilti hollow drill bit TE-CD or TE-YD	γinst	[-]	- 1,0							
Diamond coring with roughening with Hilti roughening tool TE-YRT	γinst	[-]	- 1,0							
Steel failure										
Characteristic resistance	N _{Rk} ,	s [kN]				As ·	f _{uk}			
Partial factor grade 5.8	γMs,1	N ¹⁾ [-]				1,	5			
Partial factor grade 8.8	γMs,1	N ¹⁾ [-]				1,	5			
Partial factor HAS-U A4, HIT-V-R	γMs,1	N ¹⁾ [-]			1,	86			2,8	36
Partial factor HAS-U HCR, HIT-V-HCR	γMs,1	N ¹⁾ [-]			1,5				2,1	
Combined pullout and concrete cone failure										
Characteristic bond resistance in uncrac	ked	concrete C20	/25							
Temperature range I: 40 °C / 24 °C	$ au_{Rk,\iota}$	_{ucr} [N/mm²]				18	8			
Temperature range II: 80 °C / 50 °C	$ au_{Rk,\iota}$	_{ucr} [N/mm²]				1	5			
Temperature range III: 120 °C / 72 °C	τ _{Rk,ι}	_{ucr} [N/mm²]				1:	3			
Characteristic bond resistance in cracke	d co	ncrete C20/25	5							
Temperature range I: 40 °C / 24 °C	$ au_{Rk,c}$	or [N/mm²]	7	,5		8,5			9,0	
Temperature range II: 80 °C / 50 °C	τ _{Rk,c}	_{cr} [N/mm²]	6	,0		7,0			7,5	
Temperature range III: 120 °C / 72 °C	τ _{Rk,0}	_{cr} [N/mm²]	5	,5		6,0			6,5	
Influence factors ψ on bond resistance	e τ _{RI}	k		•						
		C30/37				1,0)4			
Cracked and uncracked concrete: Factor for concrete strength Ψc		C40/45 1,07)7						
		C50/60	1,1				•			
	_	40 °C/24 °C				0,7	74			
Cracked and uncracked concrete: ψ^0_{si}	us	80 °C/50 °C				0,8	39			
Gustained load factor		120 °C/72 °C	0,72							

Injection System Hilti HIT-HY 200-R	
Performances	Annex C1
Essential characteristics under tension load in concrete	

Table C1: continued

Concrete cone failure					
Factor for uncracked concrete	k _{ucr,N}	[-]		11,0	
Factor for cracked concrete	k cr,N	k _{cr,N} [-] 7,7			
Edge distance	C cr,N	[mm]		1,5 ⋅ h _{ef}	
Spacing	S _{cr,N}	[mm]		3,0 · h _{ef}	
Splitting failure					
	h / h	ef ≥ 2,0	1,0 · h _{ef}	h/h _{ef} 7	
Edge distance c _{cr.sp} [mm] for	$2.0 > h / h_{ef} > 1.3$		4,6 · h _{ef} - 1,8 · h	1,3	
	h / h	ef ≤ 1,3	2,26 · h _{ef}	1,0 h _{ef} 2,26 h _{ef} c _{cr,sp}	
Spacing	S _{cr,sp}	[mm]		2·c _{cr,sp}	

¹⁾ In absence of national regulations.

Table C2: Essential characteristics for threaded rod, HAS-U-..., HIT-V-... and AM 8.8 under shear load in concrete

Threaded rod, HAS-U, HIT-V, AM 8.8			М8	M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm								•		
Characteristic resistance	V _{Rk,s}	[kN]	0,5 · A _s · f _{uk}							
Partial factor grade 5.8	$\gamma_{\text{Ms,V}}^{1)}$	[-]				1,	25			
Partial factor grade 8.8	$\gamma_{\text{Ms},V}{}^{1)}$	[-]				1,	25			
Partial factor HAS-U A4, HIT-V-R	$\gamma_{\text{Ms},\text{V}}^{1)}$	[-]			1,	56			2,	38
Partial factor HAS-U HCR, HIT-V-HCR	$\gamma_{\text{Ms},V}^{1)}$	[-]	1,25				1,75			
Ductility factor	k ₇	[-]	1,0							
Steel failure with lever arm										
Bending moment	M^0 Rk,s	[Nm]				1,2 · V	V _{el} ⋅ f _{uk}	(
Ductility factor	k ₇	[-]				1	,0			
Concrete pry-out failure										
Pry-out factor	k ₈	[-]	2,0							
Concrete edge failure										
Effective length of fastener	lf	[mm]	min (h _{ef} ; 12 · d _{nom}) m (h _{ef} ;				in 300)			
Outside diameter of fastener	d _{nom}	[mm]	8 10 12 16 20 24					27	30	

¹⁾ In absence of national regulations.

Injection System Hilti HIT-HY 200-R	
Performances Essential characteristics under tension and shear loads in concrete	Annex C2

Table C3: Essential characteristics for internally threaded sleeve HIS-(R)N under tension load in concrete

HIS-(R)N			M8	M10	M12	M16	M20
Installation safety factor							
Hammer drilling	γinst	[-]			1,0		
Hammer drilling with Hilti hollow drill bit TE-CD or TE-YD	γinst	[-]			1,0		
Diamond coring with roughening with Hilti roughening tool TE-YRT	γinst	[-]	-		1	0, ا	
Steel failure							
Characteristic resistance HIS-N with screw or threaded rod grade 8.8	$N_{Rk,s}$	[kN]	25	46	67	125	116
Partial factor	$\gamma_{\text{Ms,N}^1)}$	[-]			1,50		
Characteristic resistance HIS-RN with screw or threaded rod grade 70	N _{Rk,s}	[kN]	26	41	59	110	166
Partial factor	γMs,N ¹⁾	[-]		1	,87		2,4
Combined pull-out and Concrete cone failure							
Effective embedment depth	h _{ef}	[mm]	90	110	125	170	205
Effective fastener diameter	d ₁	[mm]	12,5	16,5	20,5	25,4	27,6
Characteristic bond resistance in uncr	acked con	crete C20/2	25				
Temperature range I: 40 °C/24 °C	TRk,ucr	[N/mm²]			13		
Temperature range II: 80 °C/50 °C	τ _{Rk,ucr}	[N/mm²]			11		
Temperature range III: 120 °C/72 °C	TRk,ucr	[N/mm²]			9,5		
Characteristic bond resistance in crac	ked concr	ete C20/25	i				
Temperature range I: 40 °C/24 °C	τ _{Rk,cr}	[N/mm²]			7		
Temperature range II: 80 °C/50 °C	τ _{Rk,cr}	[N/mm²]			5,5		
Temperature range III: 120 °C/72 °C	TRk,cr	[N/mm²]			5		
Influence factors ψ on bond resista	nce τ _{Rk}						
		C30/37			1,04		
Cracked and uncracked concrete: Factor for concrete strength Ψ	c	C40/45			1,07		
		C50/60			1,1		
	40	°C/24 °C			0,74		
Cracked and uncracked concrete: Sustained load factor	$v^0_{\rm sus}$ 80	°C/50 °C			0,89		
	120	°C/72 °C			0,72		

Injection System Hilti HIT-HY 200-R	
Performances	Annex C3
Essential characteristics under tension loads in concrete	

Table C3: continued

Concrete cone failure				
Factor for uncracked concrete	k _{ucr,N}	[-]		11,0
Factor for cracked concrete	$k_{\text{cr,N}}$	[-]		7,7
Edge distance	Ccr,N	[mm]		1,5 · h _{ef}
Spacing	S _{cr,N}	[mm]		3,0 ⋅ h _{ef}
Splitting failure				
	h	n / h _{ef} ≥ 2,0	1,0 · h _{ef}	h/h _{ef} 2,0
Edge distance c _{cr,sp} [mm] for	2,0 > h	n / h _{ef} > 1,3	4,6 h _{ef} - 1,8 h	1,3
	ł	n / h _{ef} ≤ 1,3	2,26 h _{ef}	1,0·h _{ef} 2,26·h _{ef} c _{cr,sp}
Spacing	S _{cr,sp}	[mm]		2·c _{cr,sp}

¹⁾ In absence of national regulations.

Table C4: Essential characteristics for internally threaded sleeve HIS-(R)N under shear load in concrete

HIS-(R)N	М8	M10	M12	M16	M20		
Steel failure without lever arm							
Characteristic resistance HIS-N with screw or threaded rod grade 8.8	$V_{Rk,s}$	[kN]	13	23	34	63	58
Partial factor	γ Ms,V $^{1)}$	[-]			1,25		
Characteristic resistance HIS-RN with screw or threaded rod grade 70	$V_{Rk,s}$	[kN]	13	20	30	55	83
Partial factor	$\gamma_{\text{Ms,V}}^{1)}$	[-]		1,	56		2,0
Ductility factor	k ₇	[-]	1,0				
Steel failure with lever arm							
HIS-N with screw or threaded rod grade 8.8	$M^0_{Rk,s}$	[Nm]	30	60	105	266	519
HIS-RN with screw or threaded rod grade 70	$M^0_{Rk,s}$	[Nm]	26	52	92	233	454
Ductility factor	k ₇	[-]			1,0		
Concrete pry-out failure							
Pry-out factor	k ₈	[-]			2,0		
Concrete edge failure							
Effective length of fastener	lf	[mm]	90	110	125	170	205
Outside diameter of fastener	d _{nom}	[mm]	12,5	16,5	20,5	25,4	27,6

¹⁾ In absence of national regulations.

Annex C4

Table C5: Essential characteristics for Hilti tension anchor HZA / HZA-R under tension load in concrete

Hilti tension anchor HZA, HZA-R				M16	M20	M24	M27
Installation safety factor							
Hammer drilling γ _{inst} [-]					1,0		
Hammer drilling with Hilti hollow drill bit TE-CD or TE-YD	γinst	[-]			1,0		
Diamond coring with roughening with Hilti roughening tool TE-YRT	γinst	[-]	-		1	,0	
Steel failure							
Characteristic resistance HZA	$N_{Rk,s}$	[kN]	46	86	135	194	253
Characteristic resistance HZA-R	$N_{Rk,s}$	[kN]	62	111	173	248	-
Partial factor	$\gamma \rm Ms^{1)}$	[-]			1,4		
Combined pull-out and concrete cone	failure						
Diameter of rebar	d	[mm]	12	16	20	25	28
Characteristic bond resistance in uncrack	ed con	crete C20/	25				
Effective anchorage depth HZA	h _{ef}	[mm]	h _{nom} - 20				
HZA-R	h _{ef}	[mm]	h _{nom} – 100				
Temperature range I: 40 °C/24 °C	τ _{Rk,ucr}	[N/mm²]	12				
Temperature range II: 80 °C/50 °C	τRk,ucr	[N/mm²]	10				
Temperature range III: 120 °C/72 °C	τ _{Rk,ucr}	[N/mm²]	8,5				
Characteristic bond resistance in cracked	concre	te C20/25					
Temperature range I: 40 °C/24 °C	τ _{Rk,cr}	[N/mm²]	7				
Temperature range II: 80 °C/50 °C	τ _{Rk,cr}	[N/mm²]	5,5				
Temperature range III: 120 °C/72 °C	τ _{Rk,cr}	[N/mm²]	5				
Influence factors ψ on bond resistance	τ _{Rk}						
		C30/37	1,04				
Cracked and uncracked concrete: Factor for concrete strength $$\psi^{\mbox{\tiny c}}$$		C40/45	1,07				
		C50/60	1,1				
	40	°C/24 °C			0,74		
Cracked and uncracked concrete: $$\psi^0_{\text{sus}}$$ Sustained load factor	80	°C/50 °C	0,89				
		°C/72 °C	0,72				

Injection System Hilti HIT-HY 200-R	
Performances Essential characteristics under tension loads in concrete	Annex C5

Table C5: continued

Concrete cone failure								
Effective anchorage depth	HZA	h _{ef}	[mm]	h _{nom}				
Effective anchorage depth	HZA-R	h _{ef}	[mm]			-		
Factor for uncracked concrete		k ucr	[-]		11,	,0		
Factor for cracked concrete		k _{cr}	[-]		7,	7		
Edge distance		C _{cr} ,N	[mm]		1,5 ·	h _{ef}		
Spacing		Scr,N	[mm]		3,0 ·	h _{ef}		
Splitting failure relevant for un	ncracked	concre	ete					
		h / h _{ef} ≥	≥ 2,0	1,0·h _{ef}	h/h _{ef}			1
Edge distance c _{cr,sp} [mm] for	2,0) > h / h	lef > 1,3	4,6·h _{ef} - 1,8·h	1,3			
		h / h _{ef} ≤	≤ 1,3	2,26·h _{ef}		1,0·h _{ef}	2,26·h _{ef}	C _{cr,sp}
Spacing		S _{cr,sp}	[mm]		2·c	r,sp		

¹⁾ In absence of national regulations.

Table C6: Essential characteristics for Hilti tension anchor HZA, HZA-R under shear load in concrete

Hilti tension anchor HZA, HZA-R			M12	M16	M20	M24	M27
Steel failure without lever arm					•		
Characteristic resistance HZA	$V_{Rk,s}$	[kN]	23	43	67	97	126
Characteristic resistance HZA-R	$V_{Rk,s}$	[kN]	31	55	86	124	-
Partial factor	γMs ¹⁾	[-]			1,5		
Ductility factor	k ₇	[-]			1,0		
Steel failure with lever arm							
HZA	M ⁰ Rk,s	[Nm]	72	183	357	617	915
HZA-R	M^0 _{Rk,s}	[Nm]	97	234	457	790	-
Ductility factor	k ₇	[-]		•	1,0		
Concrete pry-out failure							
Pry-out factor	k ₈	[-]	2,0				
Concrete edge failure							
Effective length of fastener	lf	[mm]	$min (n_{nom}, 12 \cdot n_{nom})$			min (h _{nom} 300)	
Outside diameter of fastener	d _{nom}	[mm]	12	16	20	24	27

¹⁾ In absence of national regulations.

Injection System Hilti HIT-HY 200-R	
Performances Essential characteristics under tension and shear loads in concrete	Annex C6

Table C7: Essential characteristics for rebar under tension load in concrete

Rebar			ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Installation safety factor			•	•	•				•	•	•	•	
Hammer drilling	γinst	[-]						1,0					
Hammer drilling with Hilti hollow drill bit TE-CD or TE-YD	γinst	[-]						1,0					
Diamond coring with roughening with Hilti roughening tool TE-YR		[-]		-					1	,0			
Steel failure													
Characteristic resistance Rebar B500B acc. to DIN 488:2009-08	N _{Rk,s}	[kN]	28	43	62	85	111	173	270	292	339	388	442
Partial factor	γMs,N ¹) [-]						1,4					
Combined pull-out and concre	ete cor	ne failure											
Diameter of rebar	d	[mm]	8	10	12	14	16	20	25	26	28	30	32
Characteristic bond resistance in	n uncra	icked con	crete	C20/2	25								
Temperature range I: 40°C/24°C	τRk,ucr	[N/mm²]						12					
Temperature range II: 80°C/50°C	τ _{Rk,ucr}	[N/mm²]	10										
Temperature range III: 120°C/72°C	τ _{Rk,ucr}	[N/mm²]						8,5					
Characteristic bond resistance in	n crack	ed concre	ete C2	20/25									
Temperature range I: 40°C/24°C	τ _{Rk,cr}	[N/mm²]	-	5					7				
Temperature range II: 80°C/50°C	τ _{Rk,cr}	[N/mm²]	-	4					5,5				
Temperature range III: 120°C/72°C	τ _{Rk,cr}	[N/mm²]	-	3,5					5				
Influence factors ψ on bond re	esistar	ice τ _{Rk}											
Cracked and uncracked		C30/37						1,04					
concrete:	ψc	C40/45						1,07					
Factor for concrete strength		C50/60						1,1					
Cracked and uncracked	40	°C/24 °C						0,74					
concrete: ψ^0_{sus}	80	°C/50 °C						0,89					
Sustained load factor 1		°C/72 °C											

Injection System Hilti HIT-HY 200-R	
Performances	Annex C7
Essential characteristics under tension load in concrete	

Table C7: continued

Tubio Of Toolitiiiaoa							
Concrete cone failure							
Factor for uncracked concr	ete k _{ucr,N}	[-]		11,0			
Factor for cracked concrete	e k _{cr,N}	[-]	7,7				
Edge distance	Ccr,N	[mm]		1,5 · h _{ef}			
Spacing	S _{cr} ,N	[mm]	3,0 ⋅ h _{ef}				
Splitting failure relevant	for uncracked	concr	ete				
	h/h _{ef} ≥2	2,0	1,0⋅h _{ef}	h/h _{ef}			
Edge distance c _{cr,sp} [mm] for	2,0 > h / h _{ef}	> 1,3	4,6·h _{ef} - 1,8·h	1,3			
	h / h _{ef} ≤	1,3	2,26·h _{ef}	1,0·h _{ef} 2,26·h _{ef} c _{cr,sp}			
Spacing	Scr,sp	[mm]		2 C _{cr,sp}			

¹⁾ In absence of national regulations.

Table C8: Essential characteristics for rebar under shear load in concrete

Rebar			ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Steel failure without lever arm													
Characteristic resistance Rebar B500B acc. to DIN 488:2009-08	$V_{Rk,s}$	[kN]	14	22	31	42	55	86	135	146	169	194	221
Partial factor	$\gamma_{Ms,V}$ 1)	[-]						1,5					
Ductility factor	k ₇	[-]						1,0					
Steel failure with lever arm													
Rebar B500B acc. to DIN 488:2009-08	M ^o Rk,s	[Nm]	33	65	112	178	265	518	1012	1139	1422	1749	2123
Ductility factor	k ₇	[-]						1,0					
Concrete pry-out failure													
Pry-out factor	k 8	[-]						2,0					
Concrete edge failure													
Effective length of fastener	lf	[mm]		mir	า (h _{ef} ;	12 · d	nom)			min	(h _{nom} ;	300)	
Outside diameter of fastener	d_{nom}	[mm]	8	10	12	14	16	20	25	26	28	30	32

¹⁾ In absence of national regulations.

Injection System Hilti HIT-HY 200-R	
Performances Essential characteristics under tension and shear loads in concrete	Annex C8

Table C9: Displacements under tension load

Threaded rod, H	AS-U, H	IIT-V, AM 8.8	M8	M10	M12	M16	M20	M24	M27	M30		
Uncracked concre	te temperat	ure range I : 40°C / 24°0	3			•			•			
Diaplacement	δ_{N0}	[mm/(N/mm²)]	0,02	0,03	0,03	0,04	0,06	0,07	0,07	0,08		
Displacement	δ _{N∞}	[mm/(N/mm²)]	0,04	0,05	0,06	0,08	0,10	0,13	0,14	0,16		
Uncracked concre	te temperat	ure range II : 80°C / 50°	С									
Displacement $\frac{\delta_{N0}}{\delta_{N0}} = \frac{\delta_{N0}}{\delta_{N0}} = \frac{\delta_{N0}}{\delta$												
Displacement	$\delta_{N\infty}$	[mm/(N/mm²)]	0,04	0,05	0,06	0,09	0,11	0,13	0,15	0,16		
Uncracked concre	te temperat	ure range III : 120°C / 7	2°C									
										0,16		
Displacement	δ _{N∞}	[mm/(N/mm²)]	0,04	0,05	0,07	0,09	0,11	0,13	0,15	0,17		
Cracked concrete	temperature	e range I : 40°C / 24°C										
Displacement	δνο	$[mm/(N/mm^2)]$	0,07									
Displacement	$\delta_{\text{N}\infty}$	$[mm/(N/mm^2)]$				0,	16					
Cracked concrete	temperature	e range II : 80°C / 50°C										
Displacement	δνο	$[mm/(N/mm^2)]$				0,	10					
Displacement	δ _{N∞}	[mm/(N/mm²)]				0,2	22					
Cracked concrete	temperature	e range III : 120°C / 72°C	0									
Displacement	δνο	[mm/(N/mm²)]				0,	13					
Displacement	δ _{N∞}	[mm/(N/mm²)]				0,2	29					

Table C10: Displacements under shear load

Threaded rod, HAS-U, HIT-V, AM 8.8		М8	M10	M12	M16	M20	M24	M27	M30	
Dienlesement	δνο	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
Displacement	δν∞	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05

Injection System Hilti HIT-HY 200-R	
Performances Displacements with threaded rod, HAS-U, HIT-V and AM 8.8	Annex C9

Table C11: Displacements under tension load

HIS-(R)N			М8	M10	M12	M16	M20
Uncracked concre	te tempe	erature range I : 40	°C / 24°C				
Diaplacement	δ_{N0}	[mm/(N/mm²)]	0,03	0,05	0,06	0,07	0,08
Displacement	δ _{N∞}	[mm/(N/mm²)]	0,06	0,09	0,11	0,13	0,14
Uncracked concre	$\frac{\delta_{\text{N}\infty}}{\delta_{\text{N}\infty}} \frac{\text{[mm/(I]}}{\text{[mm/(I]}}$ ncracked concrete temperature range of the properties of the proper		0°C / 50°C				
Diaplacement	δνο	[mm/(N/mm²)]	0,05	0,06	0,08	0,10	0,11
Displacement	δ _{N∞}	[mm/(N/mm²)]	0,07	0,09	0,11	0,13	0,15
Uncracked concre	te tempe	erature range III : 1	20°C / 72°C				
Displacement	δνο	[mm/(N/mm²)]	0,06	0,08	0,10	0,13	0,14
Displacement	δN∞	[mm/(N/mm²)]	0,07	0,09	0,11	0,14	0,15
Cracked concrete	tempera	ture range I : 40°C	C / 24°C				
Displacement	δνο	[mm/(N/mm²)]			0,11		
Displacement	$\delta_{N\infty}$	[mm/(N/mm²)]			0,16		
Cracked concrete	tempera	ture range II : 80°0	C / 50°C				
Displacement	δνο	[mm/(N/mm²)]			0,15		
Displacement	δn∞	[mm/(N/mm²)]			0,22		
Cracked concrete	tempera	ture range III : 120)°C / 72°C				
Displacement	δνο	[mm/(N/mm²)]	·		0,20	·	·
різріасеттеті	δ _{N∞}	[mm/(N/mm²)]			0,29		·

Table C12: Displacements under shear load

HIS-(R)N			М8	M10	M12	M16	M20
Displacement	δ_{V0}	[mm/kN]	0,06	0,06	0,05	0,04	0,04
Displacement	δν∞	[mm/kN]	0,09	0,08	0,08	0,06	0,06

Injection System Hilti HIT-HY 200-R

Performances
Displacements with HIS-(R)N

Annex C10

Table C13: Displacements under tension load

Hilti tension anchor HZA, H	ZA-R		M12	M16	M20	M24	M27
Uncracked concrete temperatu	ire range	I: 40°C / 24°C					
Diaplacement	δ_{N0}	[mm/(N/mm²)]	0,03	0,04	0,06	0,07	0,08
Displacement	δ _{N∞}	[mm/(N/mm²)]	0,06	0,08	0,13	0,13	0,15
Uncracked concrete temperatu	ire range	II : 80°C / 50°C					
Diaplacement	δηο	[mm/(N/mm²)]	0,05	0,06	0,08	0,10	0,11
Displacement	δ _{N∞}	[mm/(N/mm²)]	0,06	0,09	0,14	0,14	0,15
Uncracked concrete temperatu	ire range	: III : 120°C / 72°C					
Displacement	δηο	[mm/(N/mm²)]	0,06	0,08	0,10	0,12	0,14
Displacement	δN∞	[mm/(N/mm²)]	0,07	0,09	0,14	0,14	0,16
Cracked concrete temperature	range I	: 40°C / 24°C					
Diaplacement	δηο	[mm/(N/mm²)]			0,11		
Displacement	δ _{N∞}	[mm/(N/mm²)]			0,16		
Cracked concrete temperature	range II	: 80°C / 50°C					
Diaplacement	δ_{N0}	[mm/(N/mm²)]			0,15		
Displacement	διν∞	[mm/(N/mm²)]			0,22		
Cracked concrete temperature	range II	: 120°C / 72°C					
Displacement	δηο	[mm/(N/mm²)]			0,20		
Displacement	δ _{N∞}	[mm/(N/mm²)]			0,29		

Table C14: Displacements under shear load

Hilti tension anchor HZA, HZ	A-R		M12	M16	M20	M24	M27
Displacement	δνο	[mm/kN]	0,05	0,04	0,04	0,03	0,03
Displacement	δν∞	[mm/kN]	0,08	0,06	0,06	0,05	0,05

Injection System Hilti HIT-HY 200-R	
Performances Displacements with HZA and HZA-R	Annex C11

Table C15: Displacements under tension load

Rebar			ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Uncracked concrete t	emper	ature range I : 40)°C / 2	4°C									
Diaplacement	δνο	[mm/(N/mm²)]	0,02	0,03	0,03	0,04	0,04	0,06	0,07	0,08	0,08	0,09	0,09
Displacement -	$\delta_{\text{N}\infty}$	$[mm/(N/mm^2)]$	0,04	0,05	0,06	0,07	0,08	0,10	0,13	0,14	0,15	0,16	0,17
Uncracked concrete t	emper	ature range II : 8	0°C / 5	50°C									
	δ_{N0}	$[mm/(N/mm^2)]$	0,03	0,04	0,05	0,05	0,06	0,08	0,10	0,11	0,11	0,12	0,12
	δ _{N∞}	$[mm/(N/mm^2)]$	0,04	0,05	0,06	0,07	0,09	0,11	0,14	0,15	0,15	0,16	0,17
Uncracked concrete t	emper	ature range III : 1	20°C	/ 72°C									
Displacement -	δ_{N0}	$[mm/(N/mm^2)]$	0,04	0,05	0,06	0,07	0,08	0,10	0,12	0,13	0,14	0,15	0,16
Displacement	$\delta_{N\infty}$	$[mm/(N/mm^2)]$	0,04	0,05	0,07	0,08	0,09	0,11	0,14	0,15	0,16	0,17	0,18
Cracked concrete ten	nperati	ure range I : 40°C) / 24°(3									
Displacement -	δηο	$[mm/(N/mm^2)]$						0,11					
Displacement	δν∞	$[mm/(N/mm^2)]$						0,16					
Cracked concrete ten	nperati	ure range II : 80°0	C / 50°	С									
Displacement -	δηο	[mm/(N/mm²)]						0,15					
Displacement	δ _{N∞}	$[mm/(N/mm^2)]$						0,22					
Cracked concrete ten	nperati	ure range III : 120)°C / 7	2°C									
Displacement -	δνο	$[mm/(N/mm^2)]$						0,20					
Бізріасеттеті	$\delta_{\text{N}\infty}$	$[mm/(N/mm^2)]$						0,29					

Table C16: Displacements under shear load

Rebar			ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Dioplesement	δνο	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,03	0,03
Displacement -	δν∞	[mm/kN]	0,09	0,08	0,07	0,06	0,06	0,05	0,05	0,05	0,04	0,04	0,04

Injection System Hilti HIT-HY 200-R	
Performances	Annex C12
Displacements with rebar	

Table C17: Essential characteristics for threaded rod, HAS-U-..., HIT-V-... and AM 8.8 under tension load for seismic performance category C1

Threaded rod, HAS-U, HIT-V and A	М 8.8		М8	M10	M12	M16	M20	M24	M27	M30
Steel failure										
HAS-U-5.8 (HDG), HIT-V-5.8(F), threaded rod 5.8	$N_{Rk,s,seis}$	[kN]	ı	29	42	79	123	177	230	281
HAS-U-8.8 (HDG), HIT-V-8.8(F), threaded rod 8.8, AM 8.8	$N_{Rk,s,seis}$	[kN]	-	46	67	126	196	282	367	449
HAS-U A4, HIT-V-R, threaded rod A4-70	$N_{Rk,s,seis}$	[kN]	1	41	59	110	172	247	230	281
HAS-U HCR, HIT-V-HCR, threaded rod HCR-80	$N_{Rk,s,seis}$	[kN]	1	46	67	126	196	247	321	393
Combined pullout and concrete cone fai	lure									
Characteristic bond resistance in cracked of	oncrete C2	0/25								
Temperature range I: 40 °C/24 °C	τ _{Rk,seis} [N/	mm²]	-	5,2			7	,0		
Temperature range II: 80 °C/50 °C	τ _{Rk,seis} [N/	mm²]	-	3,9			5	,7		
Temperature range III: 120 °C/72 °C	τ _{Rk,seis} [N/	mm²]	-	3,5			4	,8		

Table C18: Essential characteristics for threaded rod, HAS-U-..., HIT-V-... and AM 8.8 under shear load for seismic performance category C1

Threaded rod, HAS-U, HIT-V, AM 8	.8		M8	M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm										
HAS-U-5.8 (HDG), HIT-V-5.8(F), threaded rod 5.8	$V_{Rk,s,seis}$	[kN]	-	11	15	27	43	62	81	98
HAS-U-8.8 (HDG), HIT-V-8.8(F), threaded rod 8.8, AM 8.8	$V_{Rk,s,seis}$	[kN]	-	16	24	44	69	99	129	157
HAS-U A4, HIT-V-R, threaded rod A4-70	$V_{Rk,s,seis}$	[kN]	-	14	21	39	60	87	81	98
HAS-U HCR, HIT-V-HCR, threaded rod HCR-80	$V_{Rk,s,seis}$	[kN]	1	16	24	44	69	87	113	137

Table C19: Displacements under tension load for seismic performance category C1

Threaded rod, HAS-U, HIT-V, AM 8.8				M10	M12	M16	M20	M24	M27	M30
Displacement 1)	$\delta_{\text{N,seis}}$	[mm]	-	0,8	0,8	0,8	0,8	0,8	8,0	0,8

¹⁾ Maximum displacement during cycling (seismic event).

Table C20: Displacements under shear load for seismic performance category C1

Threaded rod, HAS-U, HIT-V, AM 8.8				M10	M12	M16	M20	M24	M27	M30
Displacement 1)	δ v,seis	[mm]	-	3,5	3,8	4,4	5,0	5,6	6,1	6,5

Maximum displacement during cycling (seismic event).

Injection System Hilti HIT-HY 200-R	
Performances Essential characteristics for seismic performance category C1 and displacements.	Annex C13

Table C21: Essential characteristics for Hilti tension anchor HZA, HZA-R under tension load for seismic performance category C1

Hilti tension anchor H	IZA, HZA-R			M12	M16	M20	M24	M27		
Steel failure										
Characteristic resistance	e HZA	N _{Rk,s,sei}	s [kN]	46	86	135	194	253		
Characteristic resistance	e HZA-R	N _{Rk,s,sei}	s [kN]	62	111	173	248	-		
Partial factor		γMs,N,sei	s ¹⁾ [-]			1,4				
Combined pull-out and concrete cone failure										
Diameter of rebar		d	[mm]	12	16	20	25	28		
Characteristic bond resis	stance in cracke	d concrete	C20/25							
Temperature range I:	40°C/24°C	τ _{Rk,cr}	[N/mm²]			6,1				
Temperature range II:	80°C/50°C	τ _{Rk,cr}	[N/mm²]			4,8				
Temperature range III:	120°C/72°C	τ _{Rk,cr}	[N/mm²]			4,4				

¹⁾ In absence of national regulations.

Table C22: Essential characteristics for Hilti tension anchor HZA, HZA-R under shear load for seismic performance category C1

Hilti tension anchor HZA, HZA-R			M12	M16	M20	M24	M27
Steel failure without lever arm							
Characteristic resistance HZA	V _{Rk,s,seis}	[kN]	16	30	47	68	88
Characteristic resistance HZA-R	$V_{Rk,s,seis}$	[kN]	22	39	60	124	-
Partial factor	γMs,V,seis ¹⁾	[-]			1,5		

¹⁾ In absence of national regulations.

Table C23: Displacements under tension load for seismic performance category C1

Hilti tension anchor HZA, HZA-R			M12	M16	M20	M24	M27
Displacement 1)	δ N,seis	[mm]	1,3	1,3	1,3	1,3	1,3

¹⁾ Maximum displacement during cycling (seismic event).

Table C24: Displacements under shear load for seismic performance category C1

Hilti tension anchor HZA, HZA-R			M12	M16	M20	M24	M27
Displacement 1)	δ v,seis	[mm]	3,8	4,4	5,0	5,6	6,1

Maximum displacement during cycling (seismic event).

Injection System Hilti HIT-HY 200-R	
Performances Essential characteristics for seismic performance category C1 and displacements.	Annex C14

English translation prepared by DIBt

Table C25: Essential characteristics for rebar under tension load for seismic performance category C1

Rebar		ф	8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Steel failure													
Characteristic resistance for rebar B500B acc. to DIN 488:2009-08	N _{Rk,seis} [k	(N]	-	43	62	85	111	173	270	292	339	388	442
Combined pull-out and Concr	ete cone fa	ilure											
Diameter of rebar	d [m	m]	-	10	12	14	16	20	25	26	28	30	32
Characteristic bond resistanc	e in cracke	d con	icre	te C2	0/25								
Temperature range I: 40°C/24°C	τ _{Rk,cr} [N/mr	n²]	-	4,4				6,1					
Temperature range II: 80°C/50°C	τ _{Rk,cr} [N/mr	n²]	-	3,5				4,8					
Temperature range III: 120°C/72°C	τ _{Rk,cr} [N/mr	n²]	-	3				4,4					

Table C26: Essential characteristics for rebar under shear loads for seismic performance category C1

Rebar		ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Steel failure without lever arm												
Characteristic resistance for rebar B500B acc. to DIN 488:2009-08	V _{Rk,s,seis} [kN]	-	15	22	29	39	60	95	102	118	135	165

Table C27: Displacements under tension load for seismic performance category C1

Rebar		ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Displacement 1)	$\delta_{\text{N,seis}}$ [mm]	-	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3

¹⁾ Maximum displacement during cycling (seismic event).

Table C28: Displacements under shear load for seismic performance category C1

Rebar		ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Displacement 1)	$\delta_{\text{V,seis}}$ [mm]	1	3,5	3,8	4,1	4,4	5,0	5,8	6,2	6,2	6,8	6,8

¹⁾ Maximum displacement during cycling (seismic event).

Injection System Hilti HIT-HY 200-R	
Performances Essential characteristics for seismic performance category C1 and displacements.	Annex C15

English translation prepared by DIBt

Table C29: Essential characteristics for threaded rod, HAS-U-..., HIT-V... and AM 8.8 under tension load for seismic performance category C2

Threaded rod, HAS-U, HIT-V,	M8	M10	M12	M16	M20	M24	M27	M30		
Steel failure										
HAS-U 8.8 (HDG), HIT-V (-F) 8.8, AM (HDG) 8.8 Commercial standard threaded rod electroplated zinc coated 8.8	$N_{\text{Rk,s,seis}}$	[kN]		-		126	196	282		-
Combined pullout and concrete cone failure										
Characteristic bond resistance in cracl in hammer drilled holes and ham			hollow	drill b	it TE-(CD or	TE-YC)		
Temperature range I: 40 °C/24 °C	τ _{Rk,seis}	[N/mm ²]		-		3,9	4,3	3,5		-
Temperature range II: 80 °C/50 °C	τ _{Rk,seis}	[N/mm ²]		-		3,3	3,7	2,9		-
Temperature range III: 120 °C/72 °C	τ _{Rk,seis}	[N/mm ²]		-		2,8	3,2	2,5		-

Table C30: Essential characteristics for threaded rod, HAS-U-..., HIT-V-... and AM 8.8 under shear load for seismic performance category C2

Threaded rod, HAS-U, HIT-V, AM 8.8				M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm with Hilti Filling Set										
HAS-U 8.8, HIT-V 8.8, AM 8.8	$V_{Rk,s,seis}$	[kN]		-		46	77	103	-	
Steel failure without lever arm without Hilti Filling Set										
HAS-U 8.8, HIT-V 8.8, AM 8.8	V _{Rk,s,seis}	[kN]		-		40	71	90	-	
HAS-U 8.8 HDG, HIT-V-F 8.8, AM-HDG 8.8	$V_{Rk,s,seis}$	[kN]		-		30	46	66		
Commercial standard threaded rod, electroplated zinc coated 8.8	V _{Rk,s,seis}	[kN]		-		28	50	63	-	•

Injection System Hilti HIT-HY 200-R	
Performances Essential characteristics for seismic performance category C2.	Annex C16

English translation prepared by DIBt

Table C31: Displacements under tension load for seismic performance category C2

Threaded rod, HAS-U, HIT-V, AM 8.8			М8	M10	M12	M16	M20	M24	M27	M30
Displacement DLS, HAS-U 8.8 (HDG), HIT-V (-F) 8.8, AM (HDG) 8.8	$\delta_{\text{N,seis}(\text{DLS})}$	[mm]		-		0,2	0,5	0,4		-
Displacement ULS, HAS-U 8.8 (HDG), HIT-V (-F) 8.8, AM (HDG) 8.8	$\delta_{\text{N,seis}(\text{ULS})}$	[mm]		-		0,6	0,8	1.0		-

Table C32: Displacements under shear load for seismic performance category C2

Threaded rod, HAS-U, HIT-V, Al	M8	M10	M12	M16	M20	M24	M27	M30	
Installation with Hilti Filling Set									
Displacement DLS, HAS-U 8.8, HIT-V 8.8, AM 8.8	$\delta_{V,seis(DLS)}$ [mm]		-		1,2	1,4	1,1	-	-
Displacement ULS, HAS-U 8.8, HIT-V 8.8, AM 8.8	$\delta_{V,seis(ULS)}$ [mm]		-		3,2	3,8	2,6	-	•
Installation without Hilti Filling Set									
Displacement DLS, HAS-U 8.8, HIT-V 8.8, AM 8.8	$\delta_{ extsf{V}, extsf{seis}(extsf{DLS})}$ [mm]		-		3,2	2,5	3,5	-	•
Displacement DLS, HAS-U 8.8 HDG, HIT-V-F 8.8, AM HDG 8.8	$\delta_{V,seis(DLS)}$ [mm]		-		2,3	3,8	3,7	-	-
Displacement ULS, HAS-U 8.8, HIT-V 8.8, AM 8.8	δ v,seis(ULS) [mm]		-		9,2	7,1	10,2		•
Displacement ULS, HAS-U 8.8 HDG, HIT-V-F 8.8, AM HDG 8.8	δ v,seis(ULS) [mm]		-		4,3	9,1	8,4	-	•

Injection System Hilti HIT-HY 200-R	
Performances Displacements for seismic performance category C2.	Annex C17

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-12/0084 vom 28. August 2019

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

Injektionssystem Hilti HIT-HY 200-R

Verbunddübel zur Verankerung im Beton

Hilti Aktiengesellschaft 9494 SCHAAN FÜRSTENTUM LIECHTENSTEIN

Hilti Werke

40 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330499-01-0601

ETA-12/0084 vom 28. Juli 2017

Z57228.19

Europäische Technische Bewertung ETA-12/0084

Seite 2 von 40 | 28. August 2019

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Europäische Technische Bewertung ETA-12/0084

Seite 3 von 40 | 28. August 2019

Besonderer Teil

1 Technische Beschreibung des Produkts

Das Injektionssystem Hilti HIT-HY 200-R ist ein Verbunddübel, der aus einem Foliengebinde mit Injektionsmörtel Hilti HIT-HY 200-R und einem Stahlteil gemäß Anhang A besteht.

Das Stahlteil wird in ein mit Injektionsmörtel gefülltes Bohrloch gesteckt und durch Verbund zwischen Stahlteil, Injektionsmörtel und Beton verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand für statische und quasistatische Einwirkungen unter Zugbeanspruchung	Siehe Anhang C1 bis C8
Charakteristischer Widerstand für statische und quasistatische Einwirkungen unter Querbeanspruchung	Siehe Anhang C2, C4, C6, C8
Verschiebungen für statische und quasi-statische Einwirkungen	Siehe Anhang C9 bis C12
Charakteristischer Widerstand und Verschiebungen für seismische Leitungskategorie C1 und C2	Siehe Anhang C13 bis C17
Dauerhaftigkeit	Siehe Anhang B2

3.2 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Wesentliches Merkmal	Leistung
Inhalt, Emission und/oder Freisetzung von gefährlichen Stoffen	Leistung nicht bewertet

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß EAD 330499-01-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

Europäische Technische Bewertung ETA-12/0084

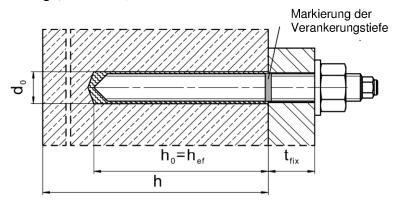
Seite 4 von 40 | 28. August 2019

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

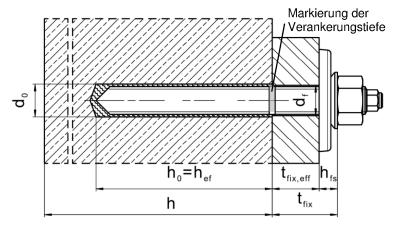
Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 28. August 2019 vom Deutschen Institut für Bautechnik

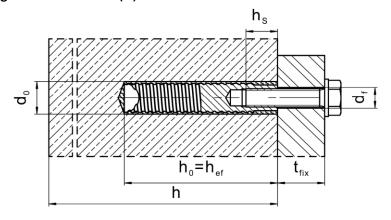
BD Dipl.-Ing. Andreas Kummerow Abteilungsleiter


Beglaubigt

Einbauzustand


Bild A1:

Gewindestange, HAS-U-..., HIT-V-... und AM 8.8

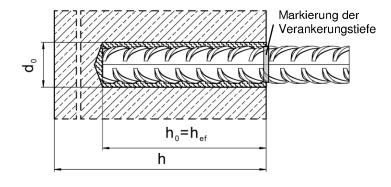

Bild A2:

Gewindestange, HAS-U-..., HIT-V-... und AM 8.8 mit Hilti Verfüll-Set

Bild A3:

Innengewindehülse HIS-(R)N

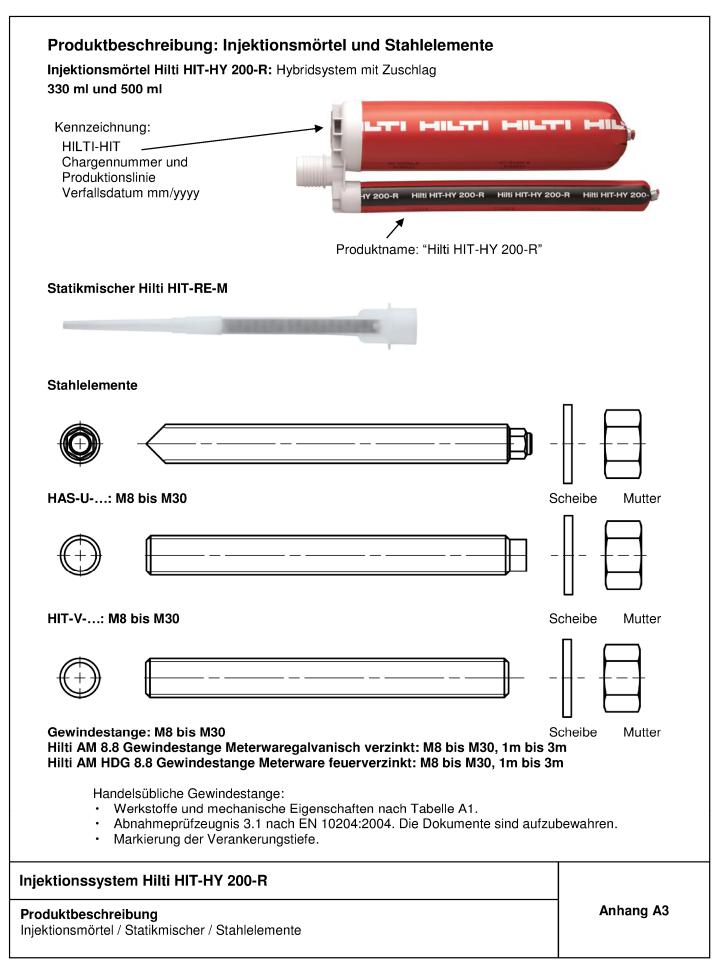
Injektionssystem Hilti HIT-HY 200-R


Produktbeschreibung
Einbauzustand

Anhang A1

Einbauzustand

Bild A4: Betonstahl



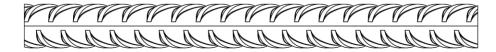
Injektionssystem Hilti HIT-HY 200-R

Produktbeschreibung
Einbauzustand

Anhang A2

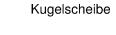
Stahlelemente

Innengewindehülse: HIS-(R)N M8 bis M20

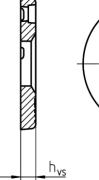


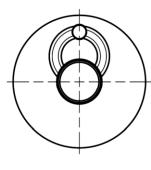
Hilti Zuganker:

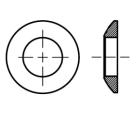
HZA M12 bis M27 und HZA-R M12 bis M24



Betonstahl (rebar): φ 8 bis φ 32


- Werkstoffe und mechanische Eigenschaften nach Tabelle A1
- Maße nach Anhang B6


Hilti Verfüll-Set zum Verfüllen des Ringspalts zwischen Anker und Anbauteil


Verschlussscheibe

Hilti Verfüll-Set			M16	M20	M24	
Durchmesser der Verschlussscheibe	dvs	[mm]	56	60	70	
Höhe der Verschlussscheibe	hvs	[mm]	6			
Höhe des Verfüll-Sets	h _{fS}	[mm]	11	13	15	

Injektionssystem Hilti HIT-HY 200-R	
Produktbeschreibung Injektionsmörtel / Statikmischer / Stahlelemente	Anhang A4

Tabelle A1: Werkstoffe

Bezeichnung	Werkstoff			
Betonstahl (rebar)				
Betonstahl: EN 1992-1-1: 2004 und AC:2010, Anhang C	Stäbe und Betonstabstahl vom Ring Klasse B oder C mit f_{yk} und k nach NDP oder NCL des EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$.			
Stahlteile aus verzin	ktem Stahl			
HAS-U-5.8 (HDG), HIT-V-5.8(F), Gewindestange	Festigkeitsklasse 5.8, $f_{uk}=500\ N/mm^2$, $f_{yk}=400\ N/mm^2$, Bruchdehnung ($I_0=5d$) > 8% duktil. Galvanisch verzinkt $\geq 5\ \mu m$, (F) oder (HDG) feuerverzinkt $\geq 45\ \mu m$.			
HAS-U-8.8 (HDG), HIT-V-8.8(F), Gewindestange	Festigkeitsklasse 8.8, $f_{uk}=800\ N/mm^2$, $f_{yk}=640\ N/mm^2$, Bruchdehnung ($I_0=5d$) > 12% duktil. Galvanisch verzinkt $\geq 5\ \mu m$, (F) oder (HDG) feuerverzinkt $\geq 45\ \mu m$.			
Hilti Meter Stange AM 8.8 (HDG)	Festigkeitsklasse 8.8, $f_{uk}=800\ N/mm^2$, $f_{yk}=640\ N/mm^2$ Bruchdehnung ($I_0=5d$) > 12% duktil. Galvanisch verzinkt $\geq 5\ \mu m$, (F) feuerverzinkt $\geq 45\ \mu m$.			
Hilti Zuganker HZA	Rundstahl mit Gewinde: galvanisch verzinkt ≥ 5 μm. Betonstahl: Betonstabstahl Klasse B gemäß NDP oder NCL des EN 1992-1-1/NA.			
Innengewindehülse HIS-N	Galvanisch verzinkt ≥ 5 μm.			
Scheibe	Galvanisch verzinkt \geq 5 μ m, feuerverzinkt \geq 45 μ m.			
Mutter	Festigkeit der Mutter abgestimmt auf Festigkeit der Ankerstange. Galvanisch verzinkt \geq 5 μ m, (F) feuerverzinkt \geq 45 μ m.			
Hilti Verfüll-Set (F)	Verschlussscheibe: Galvanisch verzinkt $\geq 5~\mu m$, (F) feuerverzinkt $\geq 45~\mu m$. Kugelscheibe: Galvanisch verzinkt $\geq 5~\mu m$, (F) feuerverzinkt $\geq 45~\mu m$. Sicherungsmutter: Galvanisch verzinkt $\geq 5~\mu m$, (F) feuerverzinkt $\geq 45~\mu m$.			

Injektionssystem Hilti HIT-HY 200-R	
Produktbeschreibung Werkstoffe	Anhang A5

Tabelle A1: fortgesetzt

rabelle AT. long	=5 -				
Stahlteile aus nicht	rostendem Stahl ändigkeitsklasse III gemäß DIN EN 1993-1-4:2015				
HAS-U A4, HIT-V-R					
Gewindestange	$ \begin{aligned} & \text{F\"ur} \leq \text{M24: Festigkeitsklasse 70, } f_{\text{uk}} = 700 \text{ N/mm}^2, } f_{\text{yk}} = 450 \text{ N/mm}^2; \\ & \text{F\"ur} > \text{M24: Festigkeitsklasse 50, } f_{\text{uk}} = 500 \text{ N/mm}^2, } f_{\text{yk}} = 210 \text{ N/mm}^2; \\ & \text{Bruchdehnung (l}_0=5\text{d}) > 8\% \text{ duktil.} \\ & \text{Nichtrostender Stahl 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014} \end{aligned} $				
Hilti Zuganker HZA-R	Rundstahl mit Gewinde: Nichtrostender Stahl 1.4404, 1.4362, 1.4571 EN 10088-1:2014. Betonstahl: Betonstabstahl Klasse B gemäß NDP oder NCL des EN 1992-1-1/NA.				
Innengewindehülse HIS-RN	Nichtrostender Stahl 1.4401, 1.4571 EN 10088-1:2014.				
Scheibe	Nichtrostender Stahl 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088- 1:2014				
Mutter	$\begin{aligned} & \text{F\"ur} \leq \text{M24: Festigkeitsklasse 70, } f_{uk} = 700 \text{ N/mm}^2, f_{yk} = 450 \text{ N/mm}^2, \\ & \text{F\"ur} > \text{M24: Festigkeitsklasse 50, } f_{uk} = 500 \text{ N/mm}^2, f_{yk} = 210 \text{ N/mm}^2, \\ & \text{Nichtrostender Stahl 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014} \end{aligned}$				
	korrosionsbeständigem Stahl				
der Korrosionsbest	ändigkeitsklasse V gemäß DIN EN 1993-1-4:2015				
HAS-U HCR, HIT-V-HCR	$ \begin{aligned} & \text{F\"ur} \leq \text{M20: } f_{\text{uk}} = 800 \text{ N/mm}^2, f_{\text{yk}} = 640 \text{ N/mm}^2, \\ & \text{F\"ur} > \text{M20: } f_{\text{uk}} = 700 \text{ N/mm}^2, f_{\text{yk}} = 400 \text{ N/mm}^2, \\ & \text{Bruchdehnung } (I_0 = 5d) > 8\% \text{ duktil.} \end{aligned} $				
Gewindestange	$\begin{aligned} & \text{F\"ur} \leq \text{M20: } f_{\text{uk}} = 800 \text{ N/mm}^2, f_{\text{yk}} = 640 \text{ N/mm}^2, \\ & \text{F\"ur} > \text{M20: } f_{\text{uk}} = 700 \text{ N/mm}^2, f_{\text{yk}} = 400 \text{ N/mm}^2, \\ & \text{Bruchdehnung } (I_0 = 5\text{d}) > 8\% \text{ duktil.} \\ & \text{Hochkorrosionsbest\"{a}ndiger Stahl } 1.4529, 1.4565 \text{ EN } 10088\text{-}1\text{:}2014. \end{aligned}$				
Scheibe	Hochkorrosionsbeständiger Stahl 1.4529, 1.4565 EN 10088-1:2014.				
Mutter	$\begin{aligned} & \text{F\"{u}r} \leq \text{M20: } f_{\text{uk}} = 800 \text{ N/mm}^2, f_{\text{yk}} = 640 \text{ N/mm}^2, \\ & \text{F\"{u}r} > \text{M20: } f_{\text{uk}} = 700 \text{ N/mm}^2, f_{\text{yk}} = 400 \text{ N/mm}^2, \\ & \text{Hochkorrosionsbest\"{a}ndiger Stahl 1.4529, 1.4565 EN 10088-1:2014.} \end{aligned}$				

Injektionssystem Hilti HIT-HY 200-R	
Produktbeschreibung Werkstoffe	Anhang A6

Spezifizierung des Verwendungszwecks

Beanspruchung der Verankerung:

- Statische und guasistatische Belastung.
- · Seismische Leistungskategorie C1 und C2 (siehe Tabelle B1).

Verankerungsgrund:

- Verdichteter bewehrter oder unbewehrter Normalbeton ohne Fasern nach EN 206:2013+A1:2016.
- Festigkeitsklassen C20/25 bis C50/60 nach EN 206-1:2013+A1:2016.
- Gerissener und ungerissener Beton.

Temperatur im Verankerungsgrund:

- · Beim Einbau
 - -10 °C bis +40 °C für die übliche Temperaturveränderung nach dem Einbau
- Im Nutzungszustand

Temperaturbereich I: -40 °C bis +40 °C

(max. Langzeittemperatur +24 °C und max. Kurzzeittemperatur +40 °C)

Temperaturbereich II: -40 °C bis +80 °C

(max. Langzeittemperatur +50 °C und max. Kurzzeittemperatur +80 °C)

Temperaturbereich III: -40 °C bis +120 °C

(max. Langzeittemperatur +72 °C und max. Kurzzeittemperatur +120 °C)

Tabelle B1: Spezifikationen des Verwendungszweckes

	HIT-HY 200-R mit					
Elemente	HAS-U, HIT-V, AM 8.8	Betonstahl	HZA(-R)	HIS-(R)N		
		************	22222222 - MMM	Na in the last of		
Hammerbohren mit Hohlbohrer TE-CD oder TE-YD	✓	✓	✓	✓		
Hammerbohren	✓	✓	✓	✓		
Diamantbohren mit Aufrauhwerkzeug TE-YRT	✓	√	√	√		
Statische und quasistatische Belastung in gerissenem und ungerissenem Beton	M8 bis M30	φ 8 bis φ 32	M12 bis M27	M8 bis M20		
Seismische Leistungskategorie C1	M10 bis M30	φ 10 bis φ 32	M12 bis M27	-		
Seismische Leistungskategorie C2	M16 bis M24, HAS-U 8.8, HIT-V 8.8, AM 8.8, HAS-U 8.8 HDG, HIT-V-F 8.8, AM HDG 8.8 Handelsübliche Gewindestange (nur galvanisch verzinkt)	-	-	-		

Injektionssystem Hilti HIT-HY 200-R	
Verwendungszweck Spezifizierung	Anhang B1

Anwendungsbedingungen (Umweltbedingungen):

- · Bauteile unter den Bedingungen trockener Innenräume (alle Stahlsorten).
- Für alle anderen Bedingungen entsprechend EN 1993-1-4:2006+A1:2015-06 Korrosionsbeständigkeitsklasse nach Anhang A6 Tabelle A1. (nichtrostende Stähle)

Bemessung:

- Die Befestigungen müssen unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs bemessen werden.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Befestigungselements (z.B. Lage des Befestigungselements zur Bewehrung oder zu den Auflagern usw.) anzugeben.
- Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit: EN 1992-4:2018 und EOTA Technical Report TR 055.

Einbau:

- Nutzungskategorie: trockener oder feuchter Beton (nicht in mit Wasser gefüllten Bohrlöchern) für alle Bohrverfahren
- Bohrverfahren:
 - Hammerbohren.
 - · Hammerbohren mit Hilti Hohlbohrer TE-CD, TE-YD,
 - Diamantbohren mit nachfolgendem Aufrauen mit Hilti Aufrauwerkzeug TE-YRT.
- Montagerichtung D3: vertikal nach unten, horizontal und vertikal nach oben (z.B. Überkopf) für alle Elemente zulässig.
- · Der Einbau erfolgt durch entsprechend geschulten Personals unter der Aufsicht des Bauleiters.

Injektionssystem Hilti HIT-HY 200-R	
Verwendungszweck Spezifizierung	Anhang B2

Tabelle B2: Montagekennwerte Gewindestange, HAS-U-..., HIT-V-... und AM 8.8

Gewindestange, HAS-U, FAM 8.8	IIT-V,		М8	M10	M12	M16	M20	M24	M27	M30
Elementdurchmesser	d	[mm]	8	10	12	16	20	24	27	30
Bohrernenndurchmesser	d ₀	[mm]	10	12	14	18	22	28	30	35
Setztiefe und Bohrlochtiefe	$h_{\text{ef}} = h_0$	[mm]	60 bis 160	60 bis 200	70 bis 240	80 bis 320	90 bis 400	96 bis 480	108 bis 540	120 bis 600
Maximaler Durchmesser des Durchgangslochs im Anbauteil	df	[mm]	9	12	14	18	22	26	30	33
Höhe des Verfüll-Sets	h _{fs}	[mm]	-	-	-	11	13	15	-	-
Effektive Anbauteildicke mit Hilti Verfüll-Set	t _{fix,eff}	[mm]	$t_{\text{fix,eff}} = t_{\text{fix}} - h_{\text{fs}}$							
Minimale Bauteildicke	h _{min}	[mm]	h _{ef} + 30 ≥ 100 mm h _{ef} + 2·d ₀							
Maximales Anzugsdrehmoment	T _{max}	[Nm]	10	20	40	80	150	200	270	300
Minimaler Achsabstand	Smin	[mm]	40	50	60	75	90	115	120	140
Minimaler Randabstand	Cmin	[mm]	40	45	45	50	55	60	75	80

HAS-U-...

Kennzeichnung:


Zahl für Festigkeitsklasse und Buchstabe zur Längenidentifikation: z. B 8L.

HIT-V-...

Kennzeichnung:

5.8 - | = HIT-V-5.8 M...x | 5.8F - | = HIT-V-5.8F M...x | 8.8 - | = HIT-V-8.8 M...x | 8.8F - | = HIT-V-8.8F M...x | R - | = HIT-V-R M...x | HCR - | = HIT-V-HCR M...x |

Hilti Gewindestange Meterware AM (HDG) 8.8

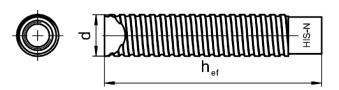

Injektionssystem Hilti HIT-HY 200-R Verwendungszweck Montagekennwerte für Gewindestange, HAS-U-..., HIT-V-... und AM 8.8 Anhang B3

Tabelle B3: Montagekennwerte Innengewindehülse HIS-(R)N

Innengewindehülse HIS-(R)N			М8	M10	M12	M16	M20
Außendurchmesser Hülse	d	[mm]	12,5	16,5	20,5	25,4	27,6
Bohrernenndurchmesser	d ₀	[mm]	14	18	22	28	32
Setztiefe und Bohrlochtiefe	$h_{\text{ef}} = h_0 $	[mm]	90	110	125	170	205
Maximaler Durchmesser des Durchgangslochs im Anbauteil	df	[mm]	9	12	14	18	22
Minimale Bauteildicke	h _{min}	[mm]	120	150	170	230	270
Maximales Anzugsdrehmoment	T _{max}	[Nm]	10	20	40	80	150
Einschraubtiefe min-max	hs	[mm]	8-20	10-25	12-30	16-40	20-50
Minimaler Achsabstand	Smin	[mm]	60	75	90	115	130
Minimaler Randabstand	Cmin	[mm]	40	45	55	65	90

Innengewindehülse HIS-(R)N...

Kennzeichnung:

Identifizierung - HILTI und Prägung "HIS-N" (für C-Stahl) Prägung "HIS-RN" (für rostfreien Stahl)

Injektionssystem Hilti HIT-HY 200-R	
Verwendungszweck Montagekennwerte für Innengewindehülse HIS-(R)N	Anhang B4



Tabelle B4: Montagekennwerte Hilti Zuganker HZA-R

Hilti Zuganker HZA-R			M12	M16	M20	M24
Betonstahl Durchmesser	ф	[mm]	12 16 20 25			
Nominelle Einbindetiefe und Bohrlochtiefe	$h_{nom} = h_0$	[mm]	170 bis 240	180 bis 320	190 bis 400	200 bis 500
Setztiefe (hef = hnom - le)	h _{ef}	[mm]	h _{nom} — 100			
Länge des glatten Schaftes	l _e	[mm]	100			
Bohrernenndurchmesser	d ₀	[mm]	16	20	25	32
Maximaler Durchmesser des Durchgangslochs im Anbauteil	df	[mm]	14	18	22	26
Maximales Anzugsdrehmoment	T _{max}	[Nm]	40	80	150	200
Minimale Bauteildicke	h _{min}	[mm]	h _{nom} + 2⋅d ₀			
Minimaler Achsabstand	Smin	[mm]	65	80	100	130
Minimaler Randabstand	Cmin	[mm]	45	50	55	60

Tabelle B5: Montagekennwerte Hilti Zuganker HZA

Hilti Zuganker HZA			M12	M16	M20	M24	M27
Betonstahl Durchmesser	ф	[mm]	12	16	20	25	28
Nominelle Einbindetiefe und Bohrlochtiefe	h _{nom} = h ₀	[mm]	90 bis 240	100 bis 320	110 bis 400	120 bis 500	140 bis 560
Setztiefe (h _{ef} = h _{nom} - l _e)	h _{ef}	[mm]	h _{nom} – 20				
Länge des glatten Schaftes	le	[mm]	20				
Bohrernenndurchmesser	d_0	[mm]	16	20	25	32	35
Maximaler Durchmesser des Durchgangslochs im Anbauteil	df	[mm]	1 14 18 22 26			30	
Maximales Anzugsdrehmoment	T _{max}	[Nm]	40	80	150	200	270
Minimale Bauteildicke	h _{min}	[mm]	h _{nom} + 2·d₀				
Minimaler Achsabstand	Smin	[mm]	65	80	100	130	140
Minimaler Randabstand	Cmin	[mm]	45	50	55	60	75

Injektionssystem Hilti HIT-HY 200-R	
Verwendungszweck Montagekennwerte Hilti Zuganker HZA-(R)	Anhang B5

Tabelle B6: Montagekennwerte Betonstahl

Betonstahl (rebar)			ф8	ф 10	ф	12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Durchmesser	ф	[mm]	8	10	1	2	14	16	20	25	26	28	30	32
Wirksame Verankerungstiefe und Bohrlochtiefe	$h_{\text{ef}} = h_0$	[mm]	60 bis 160	60 bis 200	7 b 24		75 bis 280	80 bis 320	90 bis 400	100 bis 500	104 bis 520	112 bis 560	120 bis 600	128 bis 640
Nenndurchmesser des Bohrer	d ₀	[mm]	10 / 12 ¹⁾	12 / 14 ¹⁾	141)	16 ¹⁾	18	20	25	32	32	35	37	40
Minimale Bauteildicke	h _{min}	[mm]		_{ef} + 30		h _{ef} + 2·d ₀								
Minimaler Achsabstand	Smin	[mm]	40	50	6	0	70	80	100	125	130	140	150	160
Minimaler Randabstand	Cmin	[mm]	40	45	4	5	50	50	65	70	75	75	80	80

¹⁾ Beide angegebenen Durchmesser können verwendet werden.

Betonstahl

Für Betonstahl

- Mindestwerte der bezogenen Rippenfläche f_{R,min} nach EN 1992-1-1:2004+AC:2010
- Die Rippenhöhe des Betonstahls h_{rib} soll im folgenden Bereich liegen 0,05·φ ≤ h_{rib} ≤ 0,07·φ
 (φ: Nomineller Durchmesser des Betonstahls; h_{rib}: Rippenhöhe des Betonstahls)

Injektionssystem Hilti HIT-HY 200-R	
Verwendungszweck	Anhang B6
Montagekennwerte Betonstahl	

Tabelle B7: Maximale Verarbeitungszeit und minimale Aushärtezeit Hilti-HY 200-R

Temperatur im Verankerungsgrund T ¹⁾	Maximale Verarbeitungszeit twork	Minimale Aushärtezeit t _{cure}
-10 °C bis -5 °C	3 h	20 h
> -5 °C bis 0 °C	2 h	8 h
> 0 °C bis 5 °C	1 h	4 h
>5 °C bis 10 °C	40 min	2,5 h
> 10 °C bis 20 °C	15 min	1,5 h
> 20 °C bis 30 °C	9 min	1 h
> 30 °C bis 40 °C	6 min	1 h

¹⁾ Die minimale Temperatur des Injektionsmörtels Hilti HIT-HY 200-R während der Montage ist 0°C

Injektionssystem Hilti HIT-HY 200-R	
Verwendungszweck Maximale Verarbeitungszeit und minimale Aushärtezeit	Anhang B7

Tabelle B8: Angaben zu Bohr- und Reinigungswerkzeugen

	Elemente				Bohren und Reinigen					
Gewinde- stange, HAS-U, HIT-V, AM 8.8	HIS-(R)N	Beton- stahl	HZA(-R)	Hamme	rbohren Hohl- bohrer	Diama	antbohren Aufrau- werkzeug	Bürste	Stau- zapfen	
		00000000000000000000000000000000000000	::::::::::::::::::::::::::::::::::::::			€ 🗈 🗲				
Größe	Größe	Größe	Größe	d ₀ [mm]	d ₀ [mm]	d₀ [mm]	d₀ [mm]	HIT-RB	HIT-SZ	
M8	=	φ8	=	10	-	-	=	10	-	
M10	-	φ8 / φ10	-	12	12 ¹⁾	-	-	12	12	
M12	M8	φ10 / φ12	-	14	14 ¹⁾	-	-	14	14	
-	-	φ12	M12	16	16	-	-	16	16	
M16	M10	φ14	-	18	18	18	18	18	18	
-	-	φ16	M16	20	20	20	20	20	20	
M20	M12	-	-	22	22	22	22	22	22	
-	-	φ20	M20	25	25	25	25	25	25	
M24	M16	-	-	28	28	28	28	28	28	
M27	ı	1	ı	30	-	ı	ı	30	30	
-	M20	φ25 / φ26	M24	32	32	32	32	32	32	
M30	-	φ28	M27	35	35	35	35	35	35	
-	=	φ30	-	37	-	-	=	37	37	
-	-	φ32	-	40	-	-	-	40	40	

¹⁾ Nur in Kombination mit einem Hilti Staubsauger verwenden, der eine Ansaugmenge ≥ 61 l/s besitzt (VC 20/40 –Y nur im Netzbetrieb).

Reinigungsalternativen

Handreinigung (MC):

Zum Ausblasen von Bohrlöchern bis zu einem Durchmesser von $d_0 \le 20$ mm und einer Bohrlochtiefe von $h_0 \le 10 \cdot d$ wird die Hilti-Handausblaspumpe empfohlen.

Druckluftreinigung (CAC):

Zum Ausblasen mit Druckluft wird die Verwendung einer Ausblasdüse mit einem Durchmesser von mindestens 3,5 mm empfohlen.

Automatische Reinigung (AC):

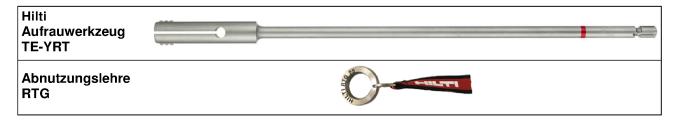
Die Reinigung wird während dem Bohren mit dem Hilti TE-CD und TE-YD Bohrsystem inklusive Staubsauger durchgeführt.

Injektionssystem Hilti HIT-HY 200-R

Verwendungszweck

Angaben zu Bohr- und Reinigungswerkzeugen Reinigungsalternativen

Anhang B8

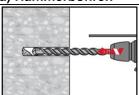

Tabelle B9: Angaben zum Hilti Aufrauwerkzeug TE-YRT

Zugehörige Komponenten							
Diama	ntbohren	Aufrauhwerkzeug TE- YRT	Abnutzungslehre RTG				
£	>		0				
d ₀	[mm]	d₀ [mm]	Größe				
Nominal	Gemessen		Grobe				
18	17,9 bis 18,2	18	18				
20	19,9 bis 20,2	20	20				
22	21,9 bis 22,2	22	22				
25	24,9 bis 25,2	25	25				
28	27,9 bis 28,2	28	28				
30	29,9 bis 30,2	30	30				
32	31,9 bis 32,2	32	32				
35	34,9 bis 35,2	35	35				

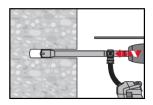
Tabelle B10: Angaben zur Aufrau- und Ausblaszeit

	Aufrauzeit t _{roughen}	Minimale Ausblaszeit t _{blowing}
h _{ef} [mm]	$t_{roughen}$ [sec] = h_{ef} [mm] / 10	tblowing [sec] = troughen [sec] + 20
0 bis 100	10	30
101 bis 200	20	40
201 bis 300	30	50
301 bis 400	40	60
401 bis 500	50	70
501 bis 600	60	80

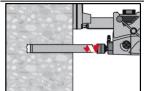
Hilti Aufrauwerkzeug TE-YRT und Abnutzungslehre RTG


Injektionssystem Hilti HIT-HY 200-R	
Verwendungszweck Angaben zum Hilti Aufrauwerkzeug TE-YRT	Anhang B9

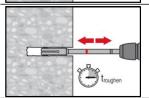
Montageanweisung


Bohrlocherstellung

a) Hammerbohren


Bohrloch mit Bohrhammer drehschlagend, unter Verwendung des passenden Bohrerdurchmessers auf die richtige Bohrtiefe erstellen.

b) Hammerbohren mit Hilti Hohlbohrer

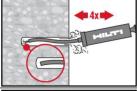

Die Bohrlocherstellung bis zur erforderlichen Setztiefe erfolgt drehschlagend mit einem Hilti Hohlbohrer TE-CD oder TE-YD in Kombination mit einem Hilti Staubsauger VC 20/40 (-Y) (Saugvolumen ≥ 57 l/s) bei dem die automatische Filterreinigung aktiviert ist. Dieses Bohrsystem beseitigt bei Anwendung gemäß der Gebrauchsanweisung des Hohlbohrers das Bohrmehl und reinigt das Bohrloch während des Bohrvorgangs. Bei Verwendung von TE-CD Größe 12 oder 14 siehe Tabelle B8. Nach Beendigung des Bohrens kann mit der Mörtelverfüllung gemäß Montageanweisung begonnen werden.

c) Diamantbohren mit nachfolgendem Aufrauen mit Hilti Aufrauwerkzeug TE-YRT:

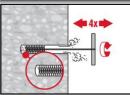
Diamantbohren ist zulässig, wenn geeignete Diamantbohrmaschinen und zugehörige Bohrkronen verwendet werden.

Kennwerte zur Verwendung in Kombination mit dem Hilti Aufrauwerkzeug TE-YRT siehe Tabelle B10.

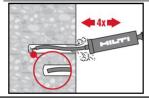
Vor dem Aufrauen muss das Wasser aus dem Bohrloch entfernt werden. Verwendbarkeit des Aufrauwerkzeugs mit der Abnutzungslehre RTG prüfen. Das Bohrloch über die gesamte Bohrtiefe bis zur geforderten Verankerungstiefe hef aufrauen.


Bohrlochreinigung

Unmittelbar vor dem Setzen des Befestigungselements muss das Bohrloch frei von Bohrmehl und Verunreinigungen sein.


Schlechte Bohrlochreinigung = geringe Traglasten.

Handreinigung (MC)

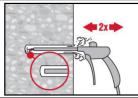

Ungerissener Beton. Bohrlochdurchmesser $d_0 \le 20$ mm und Bohrlochtiefen $h_0 \le 10 \cdot d$.

Für Bohrlochdurchmesser d₀ ≤ 20 mm und Verankerungstiefen hef ≤ 10·d. Das Bohrloch mindestens 4-mal mit der Hilti Ausblaspumpe vom Bohrlochgrund ausblasen, bis die rückströmende Luft staubfrei ist.

4-mal mit Stahlbürste in passender Größe (siehe Tabelle B8) bürsten. Stahlbürste Hilti HIT-RB mit einer Drehbewegung in das Bohrloch bis zum Bohrlochgrund einführen und wieder herausziehen (falls notwendig mit Verlängerung). Die Bürste muss beim Einführen einen Widerstand erzeugen (Bürsten $\varnothing \ge$ Bohrloch \varnothing) - falls nicht, ist die Bürste zu klein und muss durch eine größere Bürste ersetzt werden.

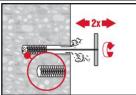
Bohrloch erneut mit der Hilti Handausblaspumpe vom Bohrlochgrund mindestens 4-mal ausblasen, bis die rückströmende Luft staubfrei ist.

Injektionssystem Hilti HIT-HY 200-R

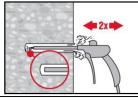

Verwendungszweck

Montageanweisung

Anhang B10

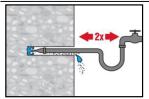


Druckluftreinigung (CAC) für alle Bohrlochdurchmesser do und Bohrlochtiefen ho.

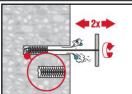


Bohrloch 2-mal vom Bohrlochgrund über die gesamte Länge mit ölfreier Druckluft (min. 6 bar bei 6 m³/h; falls notwendig mit Verlängerung) ausblasen, bis die rückströmende Luft staubfrei ist.

Für Bohrlochdurchmesser ≥ 32 mm muss der Kompressor mindestens 140 m³/h Luftstrom haben.



2-mal mit Stahlbürste in passender Größe (siehe Tabelle B8) bürsten. Stahlbürste Hilti HIT-RB mit einer Drehbewegung in das Bohrloch bis zum Bohrlochgrund einführen und wieder herausziehen (falls notwendig mit Verlängerung). Die Bürste muss beim Einführen einen Widerstand erzeugen (Bürsten $\emptyset \ge$ Bohrloch \emptyset) - falls nicht, ist die Bürste zu klein und muss durch eine größere Bürste ersetzt werden.

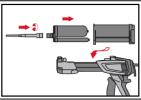


Bohrloch erneut vom Bohrlochgrund über die gesamte Länge 2-mal mit Druckluft ausblasen, bis die rückströmende Luft staubfrei ist.

Reinigen von diamantgebohrten Löchern, die mit dem Hilti Aufrauwerkzeug TE-YRT aufgeraut wurden.

Das Bohrloch 2 mal mittels Wasser mit einem Schlauch vom Bohrlochgrund spülen, bis klares Wasser aus dem Bohrloch austritt. Normaler Wasserleitungsdruck genügt.

2-mal mit Stahlbürste in passender Größe (siehe Tabelle B8) bürsten. Stahlbürste Hilti HIT-RB mit einer Drehbewegung in das Bohrloch bis zum Bohrlochgrund einführen und wieder herausziehen (falls notwendig mit Verlängerung). Die Bürste muss beim Einführen einen Widerstand erzeugen (Bürsten $\varnothing \ge$ Bohrloch \varnothing) - falls nicht, ist die Bürste zu klein und muss durch eine größere Bürste ersetzt werden.



Bohrloch 2-mal vom Bohrlochgrund über die gesamte Länge mit ölfreier Druckluft (min. 6 bar bei 6 m³/h; falls notwendig mit Verlängerung) ausblasen, bis die rückströmende Luft staubfrei und das Bohrloch trocken ist. Vor dem Verfüllen mit Mörtel das Wasser vollständig aus dem Bohrloch entfernen bis das Bohrloch vollständig trocken ist. Für Bohrlochdurchmesser ≥ 32 mm muss der Kompressor mindestens 140 m³/h Luftstrom haben.

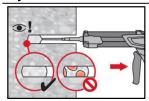
Injektionssystem Hilti HIT-HY 200-R	
Verwendungszweck Montageanweisung	Anhang B11

Injektionsvorbereitung

Hilti Statikmischer HIT-RE-M fest auf Foliengebinde aufschrauben. Den Mischer unter keinen Umständen verändern.

Befolgen Sie die Bedienungsanleitung des Auspressgerätes.

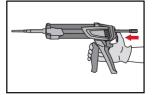
Prüfen der Kassette und des Foliengebindes auf einwandfreie Funktion. Foliengebinde in die Kassette einführen und Kassette in Auspressgerät einsetzen.

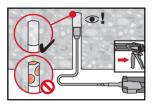

Das Öffnen der Foliengebinde erfolgt automatisch bei Auspressbeginn. Der am Anfang aus dem Mischer austretende Mörtelvorlauf darf nicht für Befestigungen verwendet werden. Die Menge des Mörtelvorlaufes ist abhängig von der Gebindegröße:

2 Hübe für 330 ml Foliengebinde,

3 Hübe für 500 ml Foliengebinde,

4 Hübe für 500 ml Foliengebinde ≤ 5 °C.


Injektion des Mörtels vom Bohrlochgrund ohne Luftblasen zu bilden.


Injizieren des Mörtels vom Bohrlochgrund und während jedem Hub den Mischer langsam etwas herausziehen.

Das Bohrloch zu ca. 2/3 verfüllen. Nach dem Einsetzen des Befestigungselementes muss der Ringspalt vollständig mit Mörtel ausgefüllt sein.

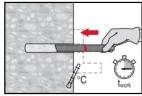
In nassem Beton muss das Befestigungselement direkt nach dem Reinigen gesetzt werden.

Nach der Mörtelinjektion die Entriegelungstaste am Auspressgerät betätigen, um Mörtelnachlauf zu vermeiden.

Überkopfanwendung und/oder Montage bei Verankerungstiefen von hef > 250mm. Das Injizieren des Mörtels bei Überkopfanwendung ist nur mit Hilfe von Stauzapfen und Verlängerungen möglich.

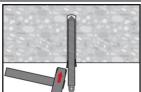
HIT-RE-M Mischer, Mischerverlängerung und entsprechenden Stauzapfen Hilti HIT-SZ (siehe Tabelle B8) zusammenfügen. Den Stauzapfen bis zum Bohrlochgrund einführen und Mörtel injizieren. Während der Injektion wird der Stauzapfen über den Staudruck vom Bohrlochgrund automatisch nach außen geschoben.

Injektionssystem Hilti HIT-HY 200-R

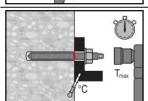

Verwendungszweck

Montageanweisung

Anhang B12

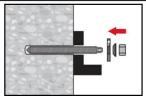


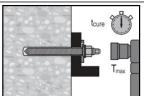
Setzen des Befestigungselementes



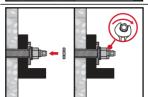
Vor der Montage sicherstellen, dass das Element trocken und frei von Öl und anderen Verunreinigungen ist.

Befestigungselement markieren und bis zur gewünschten Verankerungstiefe einführen, noch bevor die Verarbeitungszeit twork (siehe Tabelle B7) abgelaufen ist.

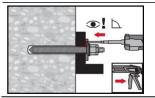

Bei Überkopfanwendung das Element in seiner endgültigen Position z.B. mittels Keile (Hilti HIT-OHW), gegen Herausrutschen sichern.


Last bzw. Drehmoment aufbringen: Nach Ablauf der Aushärtezeit t_{cure} (siehe Tabelle B7) kann der Anker belastet werden.

Das aufzubringende Drehmoment darf die angegebenen Werte T_{max} nach Tabelle B2 bis Tabelle B5 nicht überschreiten.


Einbau des Hilti Verfüll-Sets

Verwendung des Hilti Verfüll-Sets mit Standardmutter. Korrekte Orientierung der Verschlussscheibe und der Kugelscheibe beachten.



Das aufzubringende Drehmoment darf die angegebenen Werte T_{max} nach Tabelle B2 bis Tabelle B5 nicht überschreiten.

Optional:

Sicherungsmutter aufdrehen und mit einer 1/4 bis 1/2 Umdrehung anziehen. (Nicht für Größe M24.)

Ringspalt zwischen Ankerstange und Anbauteil mit Hilti Injektionsmörtel HIT-HY 200 R mit 1 bis 3 Hüben verfüllen.

Befolgen Sie die Bedienungsanleitung, die dem HIT-HY 200 R Foliengebinde beigelegt ist

Nach Ablauf der erforderlichen Aushärtezeit t_{cure} kann der Anker belastet werden.

Injektionssystem Hilti HIT-HY 200-R Verwendungszweck Montageanweisung Anhang B13

Tabelle C1: Wesentliche Merkmale für Gewindestangen, HAS-U-..., HIT-V-... und AM 8.8 unter Zugbeanspruchung in Beton

Gewindestange, HAS-U, HIT-V	und A	8.8 M		М8	M10	M12	M16	M20	M24	M27	M30
Montagesicherheitsbeiwert											
Hammerbohren γ _{inst} [-]							1,	,0			
Hammerbohren mit Hilti Hohlbohrer TE-CD oder TE-YD	- γinst		[-]	-				1,0			
Diamantbohren mit aufrauen mit Hilti Aufrauwerkzeug TE-YRT	γinst		[-]		-				1,0		
Stahlversagen											
Charakteristischer Widerstand		$N_{Rk,s}$	[kN]				As	· f uk			
Teilsicherheitsbeiwert Festigkeitsklasse 5.8		γ Ms,N $^{1)}$	[-]				1,	,5			
Teilsicherheitsbeiwert Festigkeitsklasse 8.8		$\gamma_{\text{Ms,N}}^{1)}$	[-]				1,	,5			
Teilsicherheitsbeiwert HAS-U A4, HIT-\	/-R	$\gamma_{\text{Ms},N}{}^{1)}$	[-]	-] 1,86					2,	36	
Teilsicherheitsbeiwert HAS-U HCR, HIT-V-HCR		$\gamma_{\text{Ms,N}}^{1)}$	[-]	1,5				2,1			
Kombiniertes Versagen durch Herau	szieh	en und	Beto	nausk	oruch						
Charakteristische Verbundtragfähigkeit	im ur	ngerisse	enen B	eton (C20/25	5					
Temperaturbereich I: 40 °C / 24 °C	τ _{Rk,ucr} [N/mm²] 18										
Temperaturbereich II: 80 °C / 50 °C	$ au_{Rk,\iota}$	ucr [N	/mm²]				1	15			
Temperaturbereich III: 120 °C / 72 °C	τ _{Rk,ι}	ucr [N	/mm²]	13							
Charakteristische Verbundtragfähigkeit	im ge	erissen	en Beto	on C2	0/25						
Temperaturbereich I: 40 °C / 24 °C	τ _{Rk,c}	or [N	/mm²]	7	,5		8,5			9,0	
Temperaturbereich II: 80 °C / 50 °C	τ _{Rk,c}	or [N	/mm²]	6	,0		7,0			7,5	
Temperaturbereich III: 120 °C / 72 °C	τ _{Rk,0}	or [N	/mm²]	5	,5		6,0			6,5	
Einflussfaktoren ψ auf Verbundtragfå	ähigk	eit τ _{Rk}									
Gerissener und ungerissener Beton: Einflussfaktor ψ_c		C30	/37	1,04							
		C40	/45	1,07							
Betonfestigkeit		C50	/60	1,1							
	_	40 °C/	24 °C				0,	74			
Gerissener und ungerissener Beton: Einflussfaktor Dauerlast ψ^0	sus	80 °C/	50 °C				0,8	89			
120 °C/72			72 °C	0,72							

Injektionssystem Hilti HIT-HY 200-R	
Leistungsfähigkeit	Anhang C1
Wesentliche Merkmale unter Zugbeanspruchung in Beton	

Tabelle C1: fortgesetzt

Betonausbruch								
Faktor für ungerissenen Beton	k _{ucr,N}	[-]		11,0				
Faktor für gerissenen Beton	k cr,N	[-]	7,7					
Randabstand	Ccr,N	[mm]	1,5 · h _{ef}					
Achsabstand	S _{cr,N}	[mm]	3,0 ⋅ h _{ef}					
Versagen durch Spalten								
	h / h	ef ≥ 2,0	1,0 · h _{ef}	h/h _{of}				
Randabstand c _{cr.sp} [mm] für	2,0 > h	/ h _{ef} > 1,3	4,6 · h _{ef} - 1,8 · h	1,3		1		
	h / h	_{ef} ≤ 1,3	2,26 · h _{ef}		1,0·h _{ef}	2,26·h _{ef}	C _{cr,sp}	
Achsabstand	S _{cr,sp}	[mm]		2·c _{cr,sp}				

¹⁾ Sofern nationale Regelungen fehlen.

Tabelle C2: Wesentliche Merkmale für Gewindestangen, HAS-U-..., HIT-V-... und AM 8.8 unter Querbeanspruchung in Beton

Gewindestange, HAS-U, HIT-V	, AM 8.8		M8	M10	M12	M16	M20	M24	M27	M30
Stahlversagen ohne Hebelarm				•	•	•	•	•	•	
Charakteristischer Widerstand	$V_{Rk,s}$	[kN]	0,5 · A _s · f _{uk}							
Teilsicherheitsbeiwert Festigkeitsklasse 5.8	γMs,V ¹⁾	[-]	1,25							
Teilsicherheitsbeiwert Festigkeitsklasse 8.8	$\gamma_{Ms,V^{1})}$	[-]				1,	25			
Teilsicherheitsbeiwert HAS-U A4, HIT-V-R	$\gamma_{Ms,V^{1})}$	[-]	1,56				2,38			
Teilsicherheitsbeiwert HAS-U HCR, HIT-V-HCR	$\gamma_{Ms,V^{1})}$	[-]	1,25				1,75			
Duktilitätsfaktor	k 7	[-]				1	,0			
Stahlversagen mit Hebelarm										
Biegemoment	M^0 Rk,s	[Nm]				1,2 · V	V _{el} ⋅ f _{uk}	(
Duktilitätsfaktor	k ₇	[-]				1	,0			
Betonausbruch auf der lastabgev	vandten Seite	!								
Faktor	k ₈	[-]				2	,0			
Betonkantenbruch										
Wirksame Länge des Befestigungselements	lf	[mm]	min (h _{ef} ; 12 · d _{nom}) min (h _{ef} ; 300							
Außendurchmesser des Befestigungselements	d _{nom}	[mm]	8	10	12	16	20	24	27	30

Sofern nationale Regelungen fehlen.

Injektionssystem Hilti HIT-HY 200-R	
Leistungsfähigkeit Wesentliche Merkmale unter Zug- und Querbeanspruchung in Beton	Anhang C2

Tabelle C3: Wesentliche Merkmale für Innengewindehülse HIS-(R)N unter Zugbeanspruchung in Beton

HIS-(R)N			M8	M10	M12	M16	M20	
Montagesicherheitsbeiwert				-				
Hammerbohren	γinst	[-]	1,0					
Hammerbohren mit Hilti Hohlbohrer TE- CD oder TE-YD	γinst	[-]			1,0			
Diamantbohren mit aufrauen mit Hilti Aufrauwerkzeug TE-YRT	γinst	[-]	-		1	٥, ا		
Stahlversagen								
Charakteristischer Widerstand HIS-N mit Schraube oder Gewindestange Festigkeitsklasse 8.8	$N_{Rk,s}$	[kN]	25	46	67	125	116	
Teilsicherheitsbeiwert	γMs,N ¹⁾	[-]			1,50			
Charakteristischer Widerstand HIS-RN mit Schraube oder Gewindestange Festigkeitsklasse 70	N _{Rk,s}	[kN]	26	41	59	110	166	
Teilsicherheitsbeiwert	$\gamma_{Ms,N}^{1)}$	[-]		2,4				
Kombiniertes Versagen durch Herausz	iehen	und Betor	nausbru	ch				
Wirksame Verankerungstiefe	h _{ef}	[mm]	90	110	125	170	205	
Durchmesser des Befestigungselements	d ₁	[mm]	12,5	16,5	20,5	25,4	27,6	
Charakteristische Verbundtragfähigkeit im	unger	issenen B	eton C20)/25				
Temperaturbereich I: 40 °C/24 °C	τ _{Rk,ucr}	[N/mm²]			13			
Temperaturbereich II: 80 °C/50 °C	τ _{Rk,ucr}	[N/mm²]			11			
Temperaturbereich III: 120 °C/72 °C	τRk,ucr	[N/mm²]			9,5			
Charakteristische Verbundtragfähigkeit im	n geriss	enen Beto	n C20/2	5				
Temperaturbereich I: 40 °C/24 °C	τ _{Rk,cr}	[N/mm²]			7			
Temperaturbereich II: 80 °C/50 °C	τ _{Rk,cr}	[N/mm²]			5,5			
Temperaturbereich III: 120 °C/72 °C	τ _{Rk,cr}	[N/mm²]			5			
Einflussfaktoren ψ auf Verbundtragfäh	igkeit 1	C _{Rk}						
Gerissener und ungerissener		C30/37			1,04			
Beton: ψ_c		C40/45			1,07			
Einflussfaktor Betonfestigkeit		C50/60			1,1			
Corioconor und unacrica ara-	40	°C/24 °C			0,74			
Gerissener und ungerissener Beton: Einflussfaktor Dauerlast ψ^0 sus	80	°C/50 °C			0,89			
	120	°C/72 °C	0,72					

Injektionssystem Hilti HIT-HY 200-R	
Leistungsfähigkeit Wesentliche Merkmale unter Zugbeanspruchung in Beton	Anhang C3

Tabelle C3: fortgesetzt

Betonausbruch					
Faktor für ungerissenen Beton	k _{ucr,N}	[-]		11,0	
Faktor für gerissenen Beton	k _{cr,N}	[-]		7,7	
Randabstand	Ccr,N	[mm]		1,5 \cdot h _{ef}	
Achsabstand	S _{cr,N}	[mm]		3,0 ⋅ h _{ef}	
Versagen durch Spalten					
	h ,	/ h _{ef} ≥ 2,0	1,0 · h _{ef}	h/h _{ef}	
Randabstand c _{cr,sp} [mm] für	2,0 > h	/ h _{ef} > 1,3	4,6 h _{ef} - 1,8 h	1,3	
	h ,	/ h _{ef} ≤ 1,3	2,26 h _{ef}	1,0·h _e	c _{cr,sp}
Achsabstand	S _{cr,sp}	[mm]		2·c _{cr,sp}	

¹⁾ Sofern nationale Regelungen fehlen.

Tabelle C4: Wesentliche Merkmale für Innengewindehülse HIS-(R)N unter Querbeanspruchung in Beton

HIS-(R)N			M8	M10	M12	M16	M20
Stahlversagen ohne Hebelarm							
Charakteristischer Widerstand HIS-N mit Schraube oder Gewindestange grade 8.8	$V_{Rk,s}$	[kN]	13	23	34	63	58
Teilsicherheitsbeiwert	$\gamma_{Ms,V}^{1)}$	[-]			1,25		
Charakteristischer Widerstand HIS-RN mit Schraube oder Gewindestange Festigkeitsklasse 70	$V_{Rk,s}$	[kN]	13	20	30	55	83
Teilsicherheitsbeiwert	$\gamma_{Ms,V}^{1)}$	[-]	1,56				2,0
Duktilitätsfaktor	k ₇	[-]	1,0				
Stahlversagen mit Hebelarm							
HIS-N mit Schraube der Festigkeitsklasse oder Gewindestange 8.8	$M^0_{Rk,s}$	[Nm]	30	60	105	266	519
HIS-RN mit Schraube der Festigkeitsklasse oder Gewindestange 70	M ⁰ Rk,s	[Nm]	26	52	92	233	454
Duktilitätsfaktor	k ₇	[-]			1,0		
Betonausbruch auf der lastabgewandten S	eite						
Faktor	k ₈	[-]			2,0		
Betonkantenbruch							
Wirksame Länge des Befestigungselements	lf	[mm]	90	110	125	170	205
Außendurchmesser des Befestigungselements	d _{nom}	[mm]	12,5	16,5	20,5	25,4	27,6

Sofern nationale Regelungen fehlen.

Injektionssystem Hilti HIT-HY 200-R	
Leistungsfähigkeit Wesentliche Merkmale unter Zug- und Querbeanspruchung in Beton	Anhang C4

Tabelle C5: Wesentliche Merkmale für Hilti Zuganker HZA / HZA-R unter Zugbeanspruchung in Beton

Hilti Zuganker HZA, HZA-R			M12	M16	M20	M24	M27
Montagesicherheitsbeiwert				•	•		
Hammerbohren	lammerbohren γ _{inst} [-]				1,0		
Hammerbohren mit Hilti Hohlbohrer 7 CD oder TE-YD	ΓE- γ _{inst}	[-]			1,0		
Diamantbohren mit aufrauen mit Hilti Aufrauwerkzeug TE-YRT	γinst	[-]	-		1	,0	
Stahlversagen							
Charakteristischer Widerstand HZA	$N_{Rk,s}$	[kN]	46	86	135	194	253
Charakteristischer Widerstand HZA-F	R N _{Rk,s}	[kN]	62	111	173	248	-
Teilsicherheitsbeiwert	γMs ¹⁾	[-]			1,4		
Kombiniertes Versagen durch Hera Betonausbruch	ausziehen	und					
Durchmesser des Betonstahl	d	[mm]	12	16	20	25	28
Charakteristische Verbundtragfähigke	eit im unger	rissenen B	eton C20/	25	•	•	
Effektive Verankerungstiefe HZA	h _{ef}	[mm]		h _{nom} – 20			
HZA-	-R h _{ef}	[mm]	n] h _{nom} – 100				-
Temperaturbereich I: 40 °C/24 °C	τ _{Rk,ucr}	[N/mm²]] 12				
Temperaturbereich II: 80 °C/50 °C	τ _{Rk,ucr}	[N/mm²]	2] 10				
Temperaturbereich III: 120 °C/72 °C	τ _{Rk,ucr}	[N/mm²]	m²] 8,5				
Charakteristische Verbundtragfähigke	eit im geriss	senen Beto	on C20/25				
Temperaturbereich I: 40 °C/24 °C	τ _{Rk,cr}	[N/mm²]	7				
Temperaturbereich II: 80 °C/50 °C	τ _{Rk,cr}	[N/mm²]			5,5		
Temperaturbereich III: 120 °C/72 °C	τ _{Rk,cr}	[N/mm²]			5		
Einflussfaktoren ψ auf Verbundtra	gfähigkeit	τ _{Rk}					
Gerissener und ungerissener		C30/37			1,04		
Beton: Einflussfaktor ψc		C40/45	1,07				
Betonfestigkeit	_	C50/60			1,1		
	40	°C/24 °C			0,74		
Gerissener und ungerissener Beton: Einflussfaktor Dauerlast	µ ⁰ sus 80	°C/50 °C			0,89		
120 °C/72 °C			0,72				

Injektionssystem Hilti HIT-HY 200-R	
Leistungsfähigkeit Wesentliche Merkmale unter Zugbeanspruchung in Beton	Anhang C5

Tabelle C5: fortgesetzt

Betonausbruch										
Effoltive Verenkerungetiefe	HZA	h _{ef}	[mm]	h _{nom}						
Effektive Verankerungstiefe	HZA-R h _{ef}		[mm]			-				
Faktor für ungerissenen Beton		k ucr	[-]		11	,0				
Faktor für gerissenen Beton		kcr	[-]		7,	7				
Randabstand		C _{cr,N}	[mm]	h _{ef}						
Achsabstand		Scr,N	[mm]	3,0 · h _{ef}						
Versagen durch Spalten für ur	ngerisser	nen Be	ton							
		h / h _{ef} :	≥ 2,0	1,0·h _{ef}	h/h _{ef}					
Randabstand c _{cr,sp} [mm] für	2,0) > h / h	า _{ef} > 1,3	4,6·h _{ef} - 1,8·h	1,3					
		h / h _{ef} :	≤ 1,3	2,26·h _{ef}		1,0·h _{ef}	2,26·h _{ef}	C _{cr,sp}		
Achsabstand		Scr,sp	[mm]		2·c	cr,sp				

¹⁾ Sofern nationale Regelungen fehlen.

Tabelle C6: Wesentliche Merkmale für Hilti Zuganker HZA, HZA-R unter Querbeanspruchung in Beton

Hilti Zuganker HZA, HZA-R			M12	M16	M20	M24	M27	
Stahlversagen ohne Hebelarm								
Charakteristischer Widerstand HZA	$V_{Rk,s}$	[kN]	23	43	67	97	126	
Charakteristischer Widerstand HZA-R	V _{Rk,s}	[kN]	31	55	86	124	-	
Teilsicherheitsbeiwert	γMs ¹⁾	[-]	1,5					
Duktilitätsfaktor	k ₇	[-]			1,0			
Stahlversagen mit Hebelarm								
HZA	M ⁰ Rk,s	[Nm]	72	183	357	617	915	
HZA-R	M^0 Rk,s	[Nm]	97	234	457	790	-	
Duktilitätsfaktor	k 7	[-]			1,0			
Betonausbruch auf der lastabgewan	dten Seite							
Faktor	k ₈	[-]			2,0			
Betonkantenbruch								
Wirksame Länge des Befestigungselements	lf	[mm]	min (h _{nom} ; 12 · d _{nom}) mi					
Außendurchmesser des Befestigungselements	d _{nom}	[mm]	12	16	20	24	27	

Sofern nationale Regelungen fehlen.

Injektionssystem Hilti HIT-HY 200-R	
Leistungsfähigkeit Wesentliche Merkmale unter Zug- und Querbeanspruchung in Beton	Anhang C6

Tabelle C7: Wesentliche Merkmale für Betonstahl unter Zugbeanspruchung in Beton

Betonstahl			ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Montagesicherheitsbeiwert				•	•	•		•				•	
Hammerbohren	γinst	[-]						1,0					
Hammerbohren mit Hilti Hohlbohrer TE-CD oder TE-YD	γinst	[-]						1,0					
Diamantbohren mit aufrauen mit Hilti Aufrauwerkzeug TE-YRT	γinst	[-]		-					1	,0			
Stahlversagen			•			•							
Charakteristischer Widerstand Betonstahl B500B nach DIN 488:2009-08 ²⁾	N _{Rk,s}	[kN]	1] 28 43 62 85 111 173 270 292 339 388 4					442					
Teilsicherheitsbeiwert 3)	γMs,N ¹) [-]						1,4					
Kombiniertes Versagen durch	Herau	ısziehen	und E	Beton	ausbi	ruch							
Durchmesser des Betonstahl	d	[mm]	8	10	12	14	16	20	25	26	28	30	32
Charakteristische Verbundtragfä	higkeit	im unger	issen	en Be	ton C	20/25							
Temperaturbereich I: 40°C/24°C	τ _{Rk,ucr}	[N/mm²]						12					
Temperaturbereich II: 80°C/50°C	τ _{Rk,ucr}	[N/mm²]						10					
Temperaturbereich III: 120°C/72°C	τ _{Rk,ucr}	[N/mm²]						8,5					
Charakteristische Verbundtragfä	higkeit	im geriss	enen	Beto	n C20	/25							
Temperaturbereich I: 40°C/24°C	τ _{Rk,cr}	[N/mm²]	-	5					7				
Temperaturbereich II: 80°C/50°C	τ _{Rk,cr}	[N/mm²]	-	4					5,5				
Temperaturbereich III: 120°C/72°C	τRk,cr	[N/mm²]	-	3,5					5				
Einflussfaktoren ψ auf Verbun	dtragf	ähigkeit '	T _{Rk}										
Gerissener und ungerissener		C30/37						1,04					
Beton: Einflussfaktor	ψc	C40/45			1,07								
Betonfestigkeit		C50/60			1,1								
Gerissener und	40	°C/24 °C		0,74									
ungerissener Beton: ψ^0_{sus}	80	°C/50 °C						0,89					
Einflussfaktor Dauerlast	120	°C/72 °C						0,72					

Anhang C7

Tabelle C7: fortgesetzt

Betonausbruch										
Faktor für ungerissenen Bet	on k _{ucr,N}	[-]		11,0						
Faktor für gerissenen Beton	k cr,N	[-]	7,7							
Randabstand	Ccr,N	[mm]		1,5 · h _{ef}						
Achsabstand	S _{cr,N}	[mm]	3,0 ⋅ h _{ef}							
Versagen durch Spalten fü	ür ungerisse	nen Be	ton							
_	h / h _{ef} ≥ 2	2,0	1,0⋅h _{ef}	h/h _{ef} 2,0						
Randabstand ccr,sp [mm] für	$2,0 > h / h_{ef}$	> 1,3	4,6·h _{ef} - 1,8·h	1,3						
	h / h _{ef} ≤ ′	1,3	2,26·h _{ef}	1,0·h _{ef} 2,26·h _{ef} c _{cr,sp}						
Achsabstand	S _{cr,sp}	[mm]		2 C _{cr,sp}						

¹⁾ Sofern nationale Regelungen fehlen.

Tabelle C8: Wesentliche Merkmale für Betonstahl unter Querbeanspruchung in Beton

Betonstahl			ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Stahlversagen ohne Hebelarm)			1	•	•	•						
Charakteristischer Widerstand Betonstahl B500B nach DIN 488:2009-08	$V_{Rk,s}$	[kN]	14	22	31	42	55	86	135	146	169	194	221
Teilsicherheitsbeiwert	γMs,V ¹⁾	1,5											
Duktilitätsfaktor	k ₇	[-]	1,0										
Stahlversagen mit Hebelarm													
Betonstahl B500B nach DIN 488:2009-08	Mº _{Rk,s}	[Nm]	33	65	112	178	265	518	1012	1139	1422	1749	2123
Duktilitätsfaktor	k ₇	[-]		•	•		•	1,0			•	•	•
Betonausbruch auf der lastab	gewand	ten Se	eite										
Faktor	k ₈	[-]						2,0					
Betonkantenbruch													
Wirksame Länge des Befestigungselements	lf	[mm]	min (h _{ef} ; 12 · d _{nom}) min (h _{nom} ; 300)										
Außendurchmesser des Befestigungselements	d _{nom}	[mm]	8	10	12	14	16	20	25	26	28	30	32

¹⁾ Sofern nationale Regelungen fehlen.

Injektionssystem Hilti HIT-HY 200-R	
Leistungsfähigkeit Wesentliche Merkmale unter Zug- und Querbeanspruchung in Beton	Anhang C8

Tabelle C9: Verschiebungen unter Zugbeanspruchung

Gewindestange	, HAS-U,	HIT-V, AM 8.8	М8	M10	M12	M16	M20	M24	M27	M30
Ungerissener Bet	on Temperat	urbereich I : 40°C / 24°	С						•	•
Vorachichung	δνο	[mm/(N/mm²)]	0,02	0,03	0,03	0,04	0,06	0,07	0,07	0,08
Verschiebung	δ _{N∞}	[mm/(N/mm²)]	0,04	0,05	0,06	0,08	0,10	0,13	0,14	0,16
Ungerissener Bet	on Temperat	urbereich II: 80°C / 50°	.C							
Verschiebung	δνο	$[mm/(N/mm^2)]$	0,03	0,04	0,05	0,06	0,08	0,09	0,10	0,12
verscrilebung	$\delta_{N\infty}$	$[mm/(N/mm^2)]$	0,04	0,05	0,06	0,09	0,11	0,13	0,15	0,16
Ungerissener Bet	on Temperat	urbereich III: 120°C / 7	2°C							
Vorechiobung	δνο	[mm/(N/mm²)]	0,04	0,05	0,06	0,08	0,10	0,12	0,13	0,16
Verschiebung	δn∞	$[mm/(N/mm^2)]$	0,04	0,05	0,07	0,09	0,11	0,13	0,15	0,17
Gerissener Beton	Temperatur	bereich I : 40°C / 24°C								
Verschiebung	δνο	$[mm/(N/mm^2)]$				0,0	07			
verscrilebung	$\delta_{\text{N}\infty}$	[mm/(N/mm²)]				0,	16			
Gerissener Beton	Temperatur	bereich II : 80°C / 50°C								
Verschiebung	δνο	$[mm/(N/mm^2)]$				0,	10			
verscrilebung	δn∞	[mm/(N/mm²)]				0,2	22			
Gerissener Beton	Temperatur	bereich III : 120°C / 72°	С							
Verschiebung	δνο	[mm/(N/mm²)]				0,	13			
verscritebung	$\delta_{N\infty}$	$[mm/(N/mm^2)]$				0,2	29			

Tabelle C10: Verschiebungen unter Querbeanspruchung

Gewindestange	e, HAS-U	., HIT-V, AM 8.8	М8	M10	M12	M16	M20	M24	M27	M30
Mayaalai alayyaa	δνο	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
Verschiebung	δν∞	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05

Injektionssystem Hilti HIT-HY 200-R	
Leistungsfähigkeit Verschiebungen Gewindestange, HAS-U, HIT-V und AM 8.8	Anhang C9

Tabelle C11: Verschiebungen unter Zugbeanspruchung

HIS-(R)N			М8	M10	M12	M16	M20			
Ungerissener Bet	on Temp	eraturbereich I : 40	°C / 24°C							
Vorashishung	δνο	[mm/(N/mm²)]	0,03	0,05	0,06	0,07	0,08			
Verschiebung	δ _{N∞}	[mm/(N/mm²)]	0,06	0,09	0,11	0,13	0,14			
Ungerissener Bet	on Temp	eraturbereich II : 80)°C / 50°C							
Vorashishung	δνο	[mm/(N/mm²)]	0,05	0,06	0,08	0,10	0,11			
Verschiebung	δ _{N∞}	[mm/(N/mm²)]	0,07	0,09	0,11	0,13	0,15			
Ungerissener Bet	on Temp	eraturbereich III : 1:	20°C / 72°C							
Vorschiebung	δνο	[mm/(N/mm²)]	0,06	0,08	0,10	0,13	0,14			
Verschiebung $\frac{-\delta}{\delta}$	δN∞	[mm/(N/mm²)]	0,07	0,09	0,11	0,14	0,15			
Gerissener Beton	Tempe	raturbereich I : 40°C	C / 24°C							
Verschiebung	δνο	[mm/(N/mm²)]	0,11							
verschiebung	$\delta_{\text{N}\infty}$	[mm/(N/mm²)]			0,16					
Gerissener Beton	Temper	aturbereich II : 80°C	C / 50°C							
Verschiebung	δνο	[mm/(N/mm²)]			0,15					
verscritebung	δn∞	[mm/(N/mm²)]			0,22					
Gerissener Beton	Temper	aturbereich III : 120	°C / 72°C							
Verschiebung	δνο	[mm/(N/mm²)]			0,20					
verscriebung	δ _{N∞}	[mm/(N/mm²)]			0,29					

Tabelle C12: Verschiebungen unter Querbeanspruchung

HIS-(R)N			М8	M10	M12	M16	M20
Vorashishung	δνο	[mm/kN]	0,06	0,06	0,05	0,04	0,04
Verschiebung	δν∞	[mm/kN]	0,09	0,08	0,08	0,06	0,06

Injektionssystem Hilti HIT-HY 200-R	
Leistungsfähigkeit Verschiebungen HIS-(R)N	Anhang C10

Tabelle C13: Verschiebungen unter Zugbeanspruchung

Hilti Zuganker HZA, HZA-R			M12	M16	M20	M24	M27
Ungerissener Beton Temperat	urbereich	n I : 40°C / 24°C					
Vorachichung	δ_{N0}	[mm/(N/mm²)]	0,03	0,04	0,06	0,07	0,08
Verschiebung	δ _{N∞}	[mm/(N/mm²)]	0,06	0,08	0,13	0,13	0,15
Ungerissener Beton Temperat	urbereich	n II : 80°C / 50°C					
Verschiebung	δνο	[mm/(N/mm²)]	0,05	0,06	0,08	0,10	0,11
verschiebung	δ _{N∞}	[mm/(N/mm²)]	0,06	0,09	0,14	0,14	0,15
Ungerissener Beton Temperat	urbereich	n III : 120°C / 72°C					
Verschiebung	δ_{N0}	[mm/(N/mm²)]	0,06	0,08	0,10	0,12	0,14
verscrilebung	δ _{N∞}	[mm/(N/mm²)]	0,07	0,09	0,14	0,14	0,16
Gerissener Beton Temperaturk	ereich I	: 40°C / 24°C					
Vorachichung	δνο	[mm/(N/mm²)]			0,11		
Verschiebung	δ _{N∞}	[mm/(N/mm²)]			0,16		
Gerissener Beton Temperaturk	ereich II	: 80°C / 50°C					
Vorachichung	δ_{N0}	[mm/(N/mm²)]			0,15		
Verschiebung	δn∞	[mm/(N/mm²)]			0,22		
Gerissener Beton Temperaturk							
Vorcehiobung	δνο	[mm/(N/mm²)]			0,20		
Verschiebung	δ _{N∞}	[mm/(N/mm²)]			0,29		

Tabelle C14: Verschiebungen unter Querbeanspruchung

Hilti Zuganker HZA, HZA-R			M12	M16	M20	M24	M27
Versebiehung	δ_{V0}	[mm/kN]	0,05	0,04	0,04	0,03	0,03
Verschiebung	δν∞	[mm/kN]	0,08	0,06	0,06	0,05	0,05

Injektionssystem Hilti HIT-HY 200-R	
Leistungsfähigkeit Verschiebungen HZA und HZA-R	Anhang C11

Tabelle C15: Verschiebungen unter Zugbeanspruchung

		J		_	-		_						
Betonstahl			ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Ungerissener Beton	Tempe	eraturbereich I : 40	0°C / 2	4°C									
Vorashishung	δηο	$[mm/(N/mm^2)]$	0,02	0,03	0,03	0,04	0,04	0,06	0,07	0,08	0,08	0,09	0,09
Verschiebung	$\delta_{N\infty}$	$[mm/(N/mm^2)]$	0,04	0,05	0,06	0,07	0,08	0,10	0,13	0,14	0,15	0,16	0,17
Ungerissener Beton	Tempe	eraturbereich II : 8	80°C / 9	50°C									
	δηο	$[mm/(N/mm^2)]$	0,03	0,04	0,05	0,05	0,06	0,08	0,10	0,11	0,11	0,12	0,12
	δ _{N∞}	$[mm/(N/mm^2)]$	0,04	0,05	0,06	0,07	0,09	0,11	0,14	0,15	0,15	0,16	0,17
Ungerissener Beton	Tempe	raturbereich III :	120°C / 72°C										
Verschiebung	δηο	$[mm/(N/mm^2)]$	0,04	0,05	0,06	0,07	0,08	0,10	0,12	0,13	0,14	0,15	0,16
verscrilebung	δ _{N∞}	$[mm/(N/mm^2)]$	0,04	0,05	0,07	0,08	0,09	0,11	0,14	0,15	0,16	0,17	0,18
Gerissener Beton Te	mpera	turbereich I : 40°0	C / 24°	С									
Verschiebung	δηο	$[mm/(N/mm^2)]$						0,11					
verscrilebung	$\delta_{N\infty}$	$[mm/(N/mm^2)]$						0,16					
Gerissener Beton Te	mpera	turbereich II : 80°	C / 50	°C									
Verschiebung	δηο	$[mm/(N/mm^2)]$						0,15					
verscrilebung	$\delta_{N\infty}$	$[mm/(N/mm^2)]$	0,22										
Gerissener Beton Te	mpera	turbereich III : 12	20°C / 72°C										
Verschiebung	δνο	$[mm/(N/mm^2)]$	0,20										
versomenung	δN∞	$[mm/(N/mm^2)]$						0,29					

Tabelle C16: Verschiebungen unter Querbeanspruchung

Betonstahl			ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Vorachiahung	δνο	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,03	0,03
Verschiebung -	δν∞	[mm/kN]	0,09	0,08	0,07	0,06	0,06	0,05	0,05	0,05	0,04	0,04	0,04

Injektionssystem Hilti HIT-HY 200-R	
Leistungsfähigkeit	Anhang C12
Verschiebungen Betonstahl	

Tabelle C17: Wesentliche Merkmale für Gewindestangen, HAS-U-..., HIT-V-... und AM 8.8 unter Zugbeanspruchung für Seismische Leistungskategorie C1

Gewindestange, HAS-U, HIT-V und A	8.8 MA	ı	M8	M10	M12	M16	M20	M24	M27	M30
Stahlversagen										
HAS-U-5.8 (HDG), HIT-V-5.8(F), Gewindestange 5.8	N _{Rk,s,seis} [k	N]	-	29	42	79	123	177	230	281
HAS-U-8.8 (HDG), HIT-V-8.8(F), Gewindestange 8.8, AM 8.8	N _{Rk,s,seis} [k	N]		46	67	126	196	282	367	449
HAS-U A4, HIT-V-R, Gewindestange A4-70	N _{Rk,s,seis} [k	N]	-	41	59	110	172	247	230	281
HAS-U HCR, HIT-V-HCR, Gewindestange HCR-80	N _{Rk,s,seis} [k	N]	-	46	67	126	196	247	321	393
Kombiniertes Versagen durch Herauszieh	en und Beto	nau	ısbr	uch						
Charakteristische Verbundtragfähigkeit im ge	erissenen Bet	ton C	C20/	/25						
Temperaturbereich I: 40 °C/24 °C	τ _{Rk,seis} [N/mm	1 ²]	1	5,2			7	,0		
Temperaturbereich II: 80 °C/50 °C	τ _{Rk,seis} [N/mm	1 ²]	-	3,9			5	,7		
Temperaturbereich III: 120 °C/72 °C	τ _{Rk,seis} [N/mm	1 ²]	-	3,5			4	,8		

Tabelle C18: Wesentliche Merkmale für Gewindestangen, HAS-U-..., HIT-V-..., AM 8.8 unter Querbeanspruchung für seismische Leistungskategorie C1

Gewindestange, HAS-U, HIT-V, AM	8.8		M8	M10	M12	M16	M20	M24	M27	M30
Stahlversagen ohne Hebelarm										
HAS-U-5.8 (HDG), HIT-V-5.8(F), Gewindestange 5.8	$V_{Rk,s,seis}$	[kN]	-	11	15	27	43	62	81	98
HAS-U-8.8 (HDG), HIT-V-8.8(F), Gewindestange 8.8, AM 8.8	V _{Rk,s,seis}	[kN]	-	16	24	44	69	99	129	157
HAS-U A4, HIT-V-R, Gewindestange A4-70	$V_{Rk,s,seis}$	[kN]	-	14	21	39	60	87	81	98
HAS-U HCR, HIT-V-HCR, Gewindestange HCR-80	V _{Rk,s,seis}	[kN]	-	16	24	44	69	87	113	137

Tabelle C19: Verschiebungen unter Zugbeanspruchung für Seismische Leistungskategorie C1

Gewindestange, HAS-U, HIT-V, AM 8.8			М8	M10	M12	M16	M20	M24	M27	M30
Verschiebung 1)	$\delta_{\text{N,seis}}$	[mm]	-	0,8	0,8	0,8	0,8	0,8	0,8	0,8

Maximale Verschiebung während der zyklischen Beanspruchung (Erdbeben).

Tabelle C20: Verschiebungen unter Querbeanspruchung für Seismische Leistungskategorie C1

Gewindestange, HAS-U, HIT-V, AM 8.8				M10	M12	M16	M20	M24	M27	M30
Verschiebung 1)	δv,seis	[mm]	-	3,5	3,8	4,4	5,0	5,6	6,1	6,5

¹⁾ Maximale Verschiebung während der zyklischen Beanspruchung (Erdbeben).

Injektionssystem Hilti HIT-HY 200-R	
Leistungsfähigkeit Wesentliche Merkmale Seismische Leistungskategorie C1 und Verschiebungen.	Anhang C13

Tabelle C21: Wesentliche Merkmale für Hilti Zuganker HZA, HZA-R unter Zugbeanspruchung für seismische Leistungskategorie C1

Hilti Zuganker HZA, H	ZA-R			M12	M16	M20	M24	M27
Stahlversagen								
Charakteristischer Wide	rstand HZA	$N_{Rk,s,sei}$	s [kN]	46	86	135	194	253
Charakteristischer Wide	rstand HZA-R	$N_{Rk,s,sei}$	s [kN]	62	111	173	248	-
Teilsicherheitsbeiwert		γMs,N,seis	s ¹⁾ [-]			1,4		
Kombiniertes Versage	nd Betonai	usbruch						
Durchmesser des Beton	stahl	d	[mm]	12	16	20	25	28
Charakteristische Verbu	ndtragfähigkeit i	m gerisser	nen Beton (C20/25				
Temperaturbereich I:	40°C/24°C	τ _{Rk,cr}	[N/mm²]			6,1		
Temperaturbereich II:	80°C/50°C	τ _{Rk,cr}	[N/mm²]			4,8		
Temperaturbereich III:	120°C/72°C	τ _{Rk,cr}	[N/mm²]			4,4		

Sofern nationale Regelungen fehlen.

Tabelle C22: Wesentliche Merkmale für Hilti Zuganker HZA, HZA-R unter Querbeanspruchung für seismische Leistungskategorie C1

Hilti Zuganker HZA, HZA-R			M12	M16	M20	M24	M27
Stahlversagen ohne Hebelarm							
Charakteristischer Widerstand HZA	V _{Rk,s,seis}	[kN]	16	30	47	68	88
Charakteristischer Widerstand HZA-R	V _{Rk,s,seis}	[kN]	22	39	60	124	-
Teilsicherheitsbeiwert	γMs,V,seis ¹⁾	[-]			1,5		

Sofern nationale Regelungen fehlen.

Tabelle C23: Verschiebungen unter Zugbeanspruchung für seismische Leistungskategorie C1

Hilti Zuganker HZA, HZA-R			M12	M16	M20	M24	M27
Verschiebung 1)	$\delta_{\text{N,seis}}$	[mm]	1,3	1,3	1,3	1,3	1,3

¹⁾ Maximale Verschiebung während der zyklischen Beanspruchung (Erdbeben).

Tabelle C24: Verschiebungen unter Querbeanspruchung für seismische Leistungskategorie C1

Hilti Zuganker HZA, HZA-R			M12	M16	M20	M24	M27
Verschiebung 1)	δ v,seis	[mm]	3,8	4,4	5,0	5,6	6,1

Maximale Verschiebung während der zyklischen Beanspruchung (Erdbeben).

Injektionssystem Hilti HIT-HY 200-R	
Leistungsfähigkeit Wesentliche Merkmale und Verschiebungen für seismische Leistungskategorie C1.	Anhang C14

Tabelle C25: Wesentliche Merkmale für Betonstahl unter Zugbeanspruchung für seismische Leistungskategorie C1

Betonstahl		ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Stahlversagen												
Charakteristischer Widerstand für Betonstahl B500B nach DIN 488:2009-08	N _{Rk,seis} [kN]	-	43	62	85	111	173	270	292	339	388	442
Kombiniertes Versagen durch	Herausziehei	า und	Beto	nausl	bruch)						
Durchmesser des Betonstahl	d [mm]	-	10	12	14	16	20	25	26	28	30	32
Charakteristische Verbundtrag	gfähigkeit im (geriss	senen	Beto	n C2	0/25						
Temperaturbereich I: 40°C/24°C	τ _{Rk,cr} [N/mm²]	-	4,4				6,1					
Temperaturbereich II: 80°C/50°C	τ _{Rk,cr} [N/mm²]	-	3,5				4,8					
Temperaturbereich III: 120°C/72°C	τ _{Rk,cr} [N/mm²]	-	3				4,4					

Tabelle C26: Wesentliche Merkmale für Betonstahl unter Querbeanspruchung für seismische Leistungskategorie C1

Betonstahl	ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Stahlversagen ohne Hebelarm											
Charakteristischer Widerstand für Betonstahl B500B nach DIN V _{Rk,s,seis} [kN] 488:2009-08	-	15	22	29	39	60	95	102	118	135	165

Tabelle C27: Verschiebungen unter Zugbeanspruchung für seismische Leistungskategorie C1

Betonstahl		ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Verschiebung 1)	$\delta_{\text{N,seis}}$ [mm]	1	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3

Maximale Verschiebung während der zyklischen Beanspruchung (Erdbeben).

Tabelle C28: Verschiebungen unter Querbeanspruchung für seismische Leistungskategorie C1

Betonstahl		ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Verschiebung 1)	$\delta_{V,seis}$ [mm]	-	3,5	3,8	4,1	4,4	5,0	5,8	6,2	6,2	6,8	6,8

¹⁾ Maximale Verschiebung während der zyklischen Beanspruchung (Erdbeben).

Injektionssystem Hilti HIT-HY 200-R	
Leistungsfähigkeit Wesentliche Merkmale und Verschiebungen für seismische Leistungskategorie C1.	Anhang C15

Tabelle C29: Wesentliche Merkmale für Gewindestange, HAS-U-..., HIT-V... und AM 8.8 unter Zugbeanspruchung für seismische Leistungskategorie C2

Gewindestange, HAS-U, HIT-V	, AM 8.8		М8	M10	M12	M16	M20	M24	M27	M30
Stahlversagen										
HAS-U 8.8 (HDG), HIT-V (-F) 8.8, AM (HDG) 8.8 Handelsübliche Gewindestange galvanisch verzinkt 8.8	N _{Rk,s,seis}	[kN]		-		126	196	282		•
Kombiniertes Versagen durch Herau	usziehen ι	ınd Beton	ausbr	uch						
Charakteristische Verbundtragfähigkei in hammergebohrten Bohrlöchern und					Hohlb	ohrer	TE-CI	O oder	TE-Y	D
Temperaturbereich I: 40 °C/24 °C	τ _{Rk,seis}	[N/mm ²]		-		3,9	4,3	3,5		-
Temperaturbereich II: 80 °C/50 °C	τ _{Rk,seis}	[N/mm ²]		-		3,3	3,7	2,9		•
Temperaturbereich III: 120 °C/72 °C	τ _{Rk,seis}	[N/mm²]		-		2,8	3,2	2,5	-	-

Tabelle C30: Wesentliche Merkmale für Gewindestangen, HAS-U-..., HIT-V-... und AM 8.8 unter Querbeanspruchung für seismische Leistungskategorie C2

Gewindestange, HAS-U, HIT-V, AM 8.8			M8	M10	M12	M16	M20	M24	M27	M30
Stahlversagen ohne Hebelarm mit Hilti Verfüll-Set										
HAS-U 8.8, HIT-V 8.8, AM 8.8	$V_{Rk,s,seis}$	[kN]		-		46	77	103		-
Stahlversagen ohne Hebelarm ohne Hilti Verfüll-Set										
HAS-U 8.8, HIT-V 8.8, AM 8.8	$V_{Rk,s,seis}$	[kN]		-		40	71	90	-	•
HAS-U 8.8 HDG, HIT-V-F 8.8, AM-HDG 8.8	$V_{Rk,s,seis}$	[kN]		-		30	46	66		
Handelsübliche Gewindestange, galvanisch verzinkt 8.8	$V_{Rk,s,seis}$	[kN]		-		28	50	63	-	-

Injektionssystem Hilti HIT-HY 200-R	
Leistungsfähigkeit Wesentliche Merkmale für seismische Leistungskategorie C2.	Anhang C16

Tabelle C31: Verschiebungen unter Zugbeanspruchung für seismische Leistungskategorie C2

Gewindestange, HAS-U, HIT-V, AM 8.8			M8	M10	M12	M16	M20	M24	M27	M30
Verschiebung DLS, HAS-U 8.8 (HDG), HIT-V (-F) 8.8, AM (HDG) 8.8	$\delta_{\text{N,seis}(\text{DLS})}$	[mm]		-		0,2	0,5	0,4		
Verschiebung ULS, HAS-U 8.8 (HDG), HIT-V (-F) 8.8, AM (HDG) 8.8	$\delta_{\text{N,seis}(\text{ULS})}$	[mm]		-		0,6	0,8	1.0	-	-

Tabelle C32: Verschiebungen unter Querbeanspruchung für seismische Leistungskategorie C2

Gewindestange, HAS-U, HIT-V, AM 8.8			М8	M10	M12	M16	M20	M24	M27	M30
Einbau mit Hilti Verfüll-Set										
Verschiebung DLS, HAS-U 8.8, HIT-V 8.8, AM 8.8	$\delta_{\text{V,seis}(\text{DLS})}$	[mm]		-		1,2	1,4	1,1	-	-
Verschiebung ULS, HAS-U 8.8, HIT-V 8.8, AM 8.8	$\delta_{\text{V,seis}(\text{ULS})}$	[mm]		-		3,2	3,8	2,6	-	
Einbau ohne Verfüll-Set										
Verschiebung DLS, HAS-U 8.8, HIT-V 8.8, AM 8.8	$\delta_{\text{V,seis}(\text{DLS})}$	[mm]		-		3,2	2,5	3,5	-	
Verschiebung DLS, HAS-U 8.8 HDG, HIT-V-F 8.8, AM HDG 8.8	$\delta_{\text{V,seis}(\text{DLS})}$	[mm]		-		2,3	3,8	3,7	-	-
Verschiebung ULS, HAS-U 8.8, HIT-V 8.8, AM 8.8	$\delta_{\text{V,seis}(\text{ULS})}$	[mm]		-		9,2	7,1	10,2	-	-
Verschiebung ULS, HAS-U 8.8 HDG, HIT-V-F 8.8, AM HDG 8.8	δ V,seis(ULS)	[mm]		-		4,3	9,1	8,4	-	-

Injektionssystem Hilti HIT-HY 200-R	
Leistungsfähigkeit Verschiebungen für seismische Leistungskategorie C2.	Anhang C17